10 research outputs found

    Directional spreading and individual wave height distributions in the coastal zone: measurements and simulations

    No full text
    Characteristics of the individual wave height distribution in shallow water have been investigated using measured wave data and results of numerical simulations using the non-hydrostatic SWASH model. It is shown that the SWASH model is capable of reproducing the temporal and spatial variation of surface elevation in a wave flume and the resulting individual wave height distributions, whereas three theoretical distributions fail to do so. SWASH was also applied to a 2D field case and was able to reproduce the individual wave height distribution. Finally, the effect of directional spreading on the individual wave height distribution was determined by performing two SWASH model runs; one with directional spreading and one with uni-directional irregular waves.. The results suggest that directional spreading increases the highest individual wave height

    FLUID-STRUCTURE-SOIL INTERACTION OF A MOORED WAVE ENERGY DEVICE: Fluid-structure-soil interaction of a moored wave energy device

    No full text
    This paper explores the response of a wave energy device during extreme and operational conditions and the effect of this response on the geotechnical stability of the associated taut moorings. The non-hydro static wave-flow model SWASH is used to simulate the response of a taut-moored wave energy converter. The predicted forces acting on the mooring system are used to compute the build-up of excess pore pressures in the soil around the mooring anchor and the resulting changes in strength and capacity. An initial loss of strength is followed by a subsequent increase in capacity, associated with long-term cyclic loading and hardening due to consolidation. The analyses show how cyclic loading may actually benefit and reduce anchoring requirements for wave energy devices. It demonstrates the viability of a close interdisciplinary approach towards an optimized and cost-effective design of mooring systems, which form a significant proportion of expected capital expenditures

    Free and forced components of shoaling long waves in the absence of short wave breaking

    No full text
    Long waves are generated and transform when short-wave groups propagate into shallow water, but the generation and transformation processes are not fully understood. In this study we develop an analytical solution to the linearized shallow-water equations at the wave-group scale, which decomposes the long waves into a forced solution (a bound long wave) and free solutions (free long waves). The solution relies on the hypothesis that free long waves are continuously generated as short-wave groups propagate over a varying depth. We show that the superposition of free long waves and a bound long wave results in a shift of the phase between the short-wave group and the total long wave, as the depth decreases prior to short-wave breaking. While it is known that short-wave breaking leads to free long generation, through breakpoint forcing and bound wave release mechanisms, we highlight the importance of an additional free long wave generation mechanism due to depth variations, in the absence of breaking. This mechanism is important because as free long waves of different origins combine, the total free long wave amplitude is dependent on their phase relationship. Our free and forced solutions are verified against a linear numerical model, and we show how our solution is consistent with prior theory that does not explicitly decouple free and forced motions. We also validate the results with data from a nonlinear phase-resolving numerical wave model and experimental measurements, demonstrating that our analytical model can explain trends observed in more complete representations of the hydrodynamics

    Effect of electrical stimulation used in the pulse trawl fishery for common sole on internal injuries in sandeels

    Get PDF
    Electric stimulation was used in the North Sea beam trawl fishery for common sole to reduce its environmental impact. Because electrical stimulation may cause internal injuries in fish, a laboratory experiment was conducted to study the effect of pulse exposure on lesser sandeel (Ammodytes tobianus) and greater sandeel (Hyperoplus lanceolatus), important mid-trophic species in the North Sea ecosystem. We exposed 244 sandeels between two electrodes to a pulsed bipolar current for 2 s in an experimental cage with 5 cm sediment; 221 control fish werehandled similarly but not exposed. The occurrence of spinal injuries and internal haemorrhages were scored using X-radiography and dissection. None of the sandeels exposed to a field strength of up to 600 V m–1 showed spinal injury or haemorrhage. Equal numbers of minor spinal abnormalities were found in exposed and control fish. In the absence of spinal injuries, we estimated by bootstrapping the field strength below which spinal injuries are unlikely to occur, i.e. the lower limit threshold, and the corresponding limit dose–response relationship between field strength and injury probability. We conclude that it is unlikely that pulse trawl fishery will have an ecologically significant adverse effect on the population abundance of sandeels, because of the low probabilities of exposure and injury

    North Sea Infragravity Wave Observations

    No full text
    Coastal safety assessments with wave-resolving storm impact models require a proper offshore description for the incoming infragravity (IG) waves. This boundary condition is generally obtained by assuming a local equilibrium between the directionally-spread incident sea-swell wave forcing and the bound IG waves. The contribution of the free incident IG waves is thus ignored. Here, in-situ observations of IG waves with wave periods between 100 s and 200 s at three measurement stations in the North Sea in water depths of O(30) m are analyzed to explore the potential contribution of the free and bound IG waves to the total IG wave height for the period from 2010 to 2018. The bound IG wave height is computed with the equilibrium theory of Hasselmann using the measured frequency-directional sea-swell spectra as input. The largest IG waves are observed in the open sea with a maximum significant IG wave height of O(0.3) m at 32 m water depth during storm Xaver (December 2013) with a concurrent significant sea-swell wave height in excess of 9 m. Along the northern part of the Dutch coast, this maximum has reduced to O(0.2) m at a water depth of 28 m with a significant sea-swell wave height of 7 m and to O(0.1) m at the most southern location at a water depth of 34 m with a significant sea-swell wave height of 5 m. These appreciable IG wave heights in O(30) m water depth represent a lower bound for the expected maximum IG wave heights given the fact that in the present analysis only a fraction of the full IG frequency range is considered. Comparisons with the predicted bound IG waves show that these can contribute substantially to the observed total IG wave height during storm conditions. The ratio between the predicted bound- and observed total IG variance ranges from 10% to 100% depending on the location of the observations and the timing during the storm. The ratio is typically high at the peak of the storm and is lower at both the onset and waning of the storm. There is significant spatial variability in this ratio between the stations. It is shown that differences in the directional spreading can play a significant role in this. Furthermore, the observed variability along the Dutch coast, with a substantially decreased contribution of the bound IG waves in the south compared to the northern part of the Dutch coast, are shown to be partly related to changes in the mean sea-swell wave period. For the southern part of the Dutch coast this corresponds to an increased difference with the typically assumed equilibrium boundary condition although it is not clear how much of the free IG-energy is onshore directed barring more sophisticated observations and/or modeling

    Numerical simulations of surf zone wave dynamics using Smoothed Particle Hydrodynamics

    No full text
    In this study we investigated the capabilities of the mesh-free, Lagrangian particle method (Smoothed Particle Hydrodynamics, SPH) to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two distinct bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, flows, and mean water levels. Despite the simulations spanning very different wave breaking conditions (including an extreme case with violently plunging waves on an effectively dry reef slope), the model was able to reproduce a wide range of relevant surf zone hydrodynamic processes using a fixed set of numerical parameters. This included accurate predictions of the nonlinear evolution of wave shapes (e.g., asymmetry and skewness properties), rates of wave dissipation within the surf zone, and wave setup distributions. By using this mesh-free approach, the model was able to resolve the critical crest region within the breaking waves, which provided robust predictions of the wave-induced mass fluxes within the surf zone responsible for the undertow. Within this breaking crest region, the model results capture how the potential energy of the organized wave motion is initially converted to kinetic energy and then dissipated, which reproduces the distribution of wave forces responsible for wave setup generation across the surf zone. Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamics (CFD) models, and thus can be applied to provide valuable new physical insight into surf zone dynamics.Peer Reviewe

    Improving predictions of nearshore wave dynamics and coastal impacts using Smooth Particle Hydrodynamic models

    No full text
    In this study we assess the capabilities of the mesh-free, Lagrangian particle method (Smooth Particle Hydrodynamics, SPH) method to simulate the detailed hydrodynamic processes generated by both spilling and plunging breaking waves within the surf zone, and present how the approach can be used to predict a broad spectrum of hydrodynamic processes relevant to coastal applications where wave breaking is important. The weakly-compressible SPH code DualSPHysics was applied to simulate wave breaking over two bathymetric profiles (a plane beach and fringing reef) and compared to experimental flume measurements of waves, currents, and mean water levels. We demonstrate how the model can accurately reproduce a broad range of relevant hydrodynamic processes, ranging from the nonlinear evolution of wave shapes across the surfzone, wave setup distributions, mean current profiles and wave runup. We compare the surfzone predictions with results from other classes of wave models, and illustrate some of the advantages of the SPH approach (particularly in resolving the hydrodynamics above the wave trough). Overall, the results reveal how the mesh-free SPH approach can accurately reproduce the detailed wave breaking processes with comparable skill to state-of-the-art mesh-based Computational Fluid Dynamic models, and how it can be used as a valuable tool to develop new physical insight into surf zone processes.Accepted Author ManuscriptHydraulic Structures and Flood Ris

    Directional spreading and individual wave height distributions in the coastal zone: measurements and simulations

    No full text
    Characteristics of the individual wave height distribution in shallow water have been investigated using measured wave data and results of numerical simulations using the non-hydrostatic SWASH model. It is shown that the SWASH model is capable of reproducing the temporal and spatial variation of surface elevation in a wave flume and the resulting individual wave height distributions, whereas three theoretical distributions fail to do so. SWASH was also applied to a 2D field case and was able to reproduce the individual wave height distribution. Finally, the effect of directional spreading on the individual wave height distribution was determined by performing two SWASH model runs; one with directional spreading and one with uni-directional irregular waves.. The results suggest that directional spreading increases the highest individual wave height

    15 priorities for wind-waves research: an Australian perspective

    Full text link
    The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations
    corecore