19 research outputs found

    In vitro metabolism of lidocaine in subcellular post-mitochondrial fractions and precision cut slices from cattle liver

    No full text
    In vitro models are widely used to study the biotransformation of xenobiotics and to provide input parameters to physiologically based kinetic models required to predict the kinetic behavior in vivo. For farm animals this is not common practice yet. The use of slaughterhouse-derived tissue material may provide opportunities to study biotransformation reactions in farm animals. The goal of the present study was to explore the potential of slaughterhouse-derived bovine liver S9 (S9) and precision cut liver slices (PCLSs) to capture observed biotransformation reactions of lidocaine in cows. The in vitro data obtained with both S9 and PCLSs confirm in vivo findings that 2,6-dimethylaniline (DMA) is an important metabolite of lidocaine in cows, being for both PCLSs and S9 the end-product. In case of S9, also conversion of lidocaine to lidocaine-N-oxide and monoethylglycinexylidine (MEXG) was observed. MEGX is considered as intermediate for DMA formation, given that this metabolite was metabolized to DMA by both PLCSs and S9. In contrast to in vivo, no in vitro conversion of DMA to 4-OH-DMA was observed. Further work is needed to explain this lack of conversion and to further evaluate the use of slaughterhouse-derived tissue materials to predict the biotransformation of xenobiotics in farm animals

    Exposure to low-dose perfluorooctanoic acid promotes hepatic steatosis and disrupts the hepatic transcriptome in mice

    No full text
    Objective: Perfluoroalkyl substances (PFAS) are man-made chemicals with demonstrated endocrine-disrupting properties. Exposure to perfluorooctanoic acid (PFOA) has been linked to disturbed metabolism via the liver, although the exact mechanism is not clear. Moreover, information on the metabolic effects of the new PFAS alternative GenX is limited. We examined whether exposure to low-dose PFOA and GenX induces metabolic disturbances in mice, including NAFLD, dyslipidemia, and glucose tolerance, and studied the involvement of PPARĪ±. Methods: Male C57BL/6J wildtype and PPARĪ±āˆ’/āˆ’ mice were given 0.05 or 0.3 mg/kg body weight/day PFOA, or 0.3 mg/kg body weight/day GenX while being fed a high-fat diet for 20 weeks. Glucose and insulin tolerance tests were performed after 18 and 19 weeks. Plasma metabolite levels were measured next to a detailed assessment of the liver phenotype, including lipid content and RNA sequencing. Results: Exposure to high-dose PFOA decreased body weight and increased liver weight in wildtype and PPARĪ±āˆ’/āˆ’ mice. High-dose but not low-dose PFOA reduced plasma triglycerides and cholesterol, which for triglycerides was dependent on PPARĪ±. PFOA and GenX increased hepatic triglycerides in a PPARĪ±-dependent manner. RNA sequencing showed that the effects of GenX on hepatic gene expression were entirely dependent on PPARĪ±, while the effects of PFOA were mostly dependent on PPARĪ±. In the absence of PPARĪ±, the involvement of PXR and CAR became more prominent. Conclusion: Overall, we show that long-term and low-dose exposure to PFOA and GenX disrupts hepatic lipid metabolism in mice. Whereas the effects of PFOA are mediated by multiple nuclear receptors, the effects of GenX are entirely mediated by PPARĪ±. Our data underscore the potential of PFAS to disrupt metabolism by altering signaling pathways in the liver

    Perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorononanoic acid (PFNA) increase triglyceride levels and decrease cholesterogenic gene expression in human HepaRG liver cells

    No full text
    Per- and polyfluoroalkyl substances (PFASs) are omnipresent in the environment, food chain, and humans. Epidemiological studies have shown a positive association between serum levels of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), and increased serum cholesterol and, in some cases, also triglyceride levels. However, causality has been questioned, as animal studies, as well as a human trial, showed a decrease in serum cholesterol and no effects or a decrease in plasma triglycerides. To obtain more insight into the effects of PFASs on these processes, the present study investigated the effects of PFOA, PFOS, and perfluorononanoic acid (PFNA) on intracellular triglyceride and cholesterol levels in human HepaRG liver cells. DNA microarray analyses were performed to provide insight into underlying mechanisms. All PFASs induced an increase in cellular triglyceride levels, but had no effect on cholesterol levels. Gene set enrichment analysis (GSEA) of the microarray data indicated that gene sets related to cholesterol biosynthesis were repressed by PFOA, PFOS, and PFNA. Other gene sets commonly affected by all PFAS were related to PERK/ATF4 signaling (induced), tRNA amino-acylation (induced), amino acid transport (induced), and glycolysis/gluconeogenesis (repressed). Moreover, numerous target genes of peroxisome proliferator-activated receptor Ī± (PPARĪ±) were found to be upregulated. Altogether, the present study shows that PFOA, PFOS, and PFNA increase triglyceride levels and inhibit cholesterogenic gene expression in HepaRG cells. In addition, the present study indicates that PFASs induce endoplasmic reticulum stress, which may be an important mechanism underlying some of the toxic effects of these chemicals.</p

    New approach methodologies : A quantitative in vitro to in vivo extrapolation case study with PFASs

    No full text
    Per: and polyfluoroalkyl substances (PFASs) have been associated with increased blood lipids in humans. Perfluorooctanoic acid (PFOA) has been also linked with elevated alanine transferase (ALT) serum levels in humans, and in rodents the liver is a main target organ for many PFASs. With the focus on New Approach Methodologies, the chronic oral equivalent effect doses were calculated for PFOA, PFNA (perfluorononanoic acid), PFHxS (perfluorohexanesulfonic acid) and PFOS (perfluorooctane sulfonic acid) based on in vitro effects measured in the HepaRG cell line. Selected in vitro readouts were considered biomarkers for lipid disturbances and hepatotoxicity. Concentration-response data obtained from HepaRG cells on triglyceride (TG) accumulation and expression changes of 12 selected genes (some involved in cholesterol homeostasis) were converted into corresponding human dose-response data, using physiologically based kinetic (PBK) model-facilitated reverse dosimetry. Next to this, the biokinetics of the chemicals were studied in the cell system. The current European dietary PFASs exposure overlaps with the calculated oral equivalent effect doses, indicating that the latter may lead to interference with hepatic gene expression and lipid metabolism. These findings illustrate an in vitro-in silico methodology, which can be applied for more PFASs, to select those that should be prioritized for further hazard characterization

    Correction: Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells

    No full text
    In the original publication of the article, the dilution of DAPT in sentence ā€œTo promote intestinal differentiation,ā€¦ā€ was published with an error. The ā€œ5 mM DAPTā€ should be ā€œ5 Ī¼M DAPTā€. The original article has been updated with the correct dilution.</p

    Bioassay-directed analysis-based identification of relevant pyrrolizidine alkaloids

    No full text
    Pyrrolizidine alkaloids (PAs) are produced by various plant species and have been detected as contaminants in food and feed. Monitoring programmes should include PAs that are present in relevant matrices and that exhibit a high toxic potential. The aim of the present study was to use a bioassay-directed analysis approach to identify relevant PAs not yet included in monitoring programmes. To that end, extracts of Heliotropium europaeum and H. popovii were prepared and analysed with LCā€“MS/MS for the presence of 35 PAs included in monitoring programmes, as well as for genotoxic activity in the HepaRG/Ī³H2AX assay. Europine, heliotrine and lasiocarpine were found to be the most abundant PAs. The extracts showed a higher Ī³H2AX activity than related artificial mixtures of quantified known PAs, which might point to the presence of unknown toxic PAs. The H. europaeum extract was fractionated and Ī³H2AX activities of individual fractions were determined. Fractions were further analysed applying LCā€“Orbitrap-MS analysis and Compound Discoverer software, identifying various candidate PAs responsible for the non-explained genotoxic activity. Altogether, the results obtained show that bioassay-directed analysis allows identification of candidate PAs that can be included in monitoring programmes

    Cytochrome P450 expression, induction and activity in human induced pluripotent stem cell-derived intestinal organoids and comparison with primary human intestinal epithelial cells and Caco-2 cells

    No full text
    Human intestinal organoids (HIOs) are a promising in vitro model consisting of different intestinal cell types with a 3D microarchitecture resembling native tissue. In the current study, we aimed to assess the expression of the most common intestinal CYP enzymes in a human induced pluripotent stem cell (hiPSC)-derived HIO model, and the suitability of that model to study chemical-induced changes in CYP expression and activity. We compared this model with the commonly used human colonic adenocarcinoma cell line Caco-2 and with a human primary intestinal epithelial cell (IEC)-based model, closely resembling in vivo tissue. We optimized an existing protocol to differentiate hiPSCs into HIOs and demonstrated that obtained HIOs contain a polarized epithelium with tight junctions consisting of enterocytes, goblet cells, enteroendocrine cells and Paneth cells. We extensively characterized the gene expression of CYPs and activity of CYP3A4/5, indicating relatively high gene expression levels of the most important intestinal CYP enzymes in HIOs compared to the other models. Furthermore, we showed that CYP1A1 and CYP1B1 were induced by Ī²-naphtoflavone in all three models, whereas CYP3A4 was induced by phenobarbital and rifampicin in HIOs, in the IEC-based model (although not statistically significant), but not in Caco-2 cells. Interestingly, CYP2B6 expression was not induced in any of the models by the well-known liver CYP2B6 inducer phenobarbital. In conclusion, our study indicates that hiPSC-based HIOs are a useful in vitro intestinal model to study biotransformation of chemicals in the intestine.</p

    Perfluoroalkyl substances (PFASs) decrease the expression of recombination-activating genes (RAG1 and RAG2) in human B lymphoma Namalwa cells

    No full text
    Per- and polyfluoroalkyl substances (PFASs) are omnipresent and have been shown to induce a wide range of adverse effects, including hepatotoxicity, developmental toxicity and immunotoxicity. So far, little information is available about the mechanisms underlying the toxicity of PFASs, including those related to their immunotoxicity. Reported immunotoxic effects of PFASs include decreased antibody responses in experimental animals and humans, indicating that PFASs may, among others, affect B cell function. In the present study, we first assessed the effects of PFOA on the transcriptome of the human Namalwa B cell line using RNA seq analysis. Gene expression changes, analyzed using Ingenuity Pathway Analysis, pointed to various cellular processes affected by PFOA, including ā€˜B cell developmentā€™ and ā€˜Primary immunodeficiency signalingā€™. Interestingly, PFOA decreased the expression of RAG1 and RAG2, genes involved in immunoglobulin and T cell receptor V(D)J recombination. As a next step, time- and concentration-dependent changes in the expression of RAG1 and RAG2 upon exposure to PFOA, PFNA, PFHxS and PFOS were studied through RT-qPCR analysis. Analysis with the concentrationā€“response modeling software PROAST resulted in the following potency ranking: PFNA > PFOA > PFOS > PFHxS. Altogether, the present in vitro study provides insights into the effects of selected PFASs on B cells, identifying RAG1 and RAG2 expression as possible relevant targets that may play a role in the immunotoxicity of PFASs

    Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners

    No full text
    Novel microfluidic technologies allow the manufacture of in vitro organ-on-a-chip systems that hold great promise to adequately recapitulate the biophysical and functional complexity of organs found in vivo. In this study, a gut-on-a-chip model was developed aiming to study the potential cellular association and transport of food contaminants. Intestinal epithelial cells (Caco-2) were cultured on a porous polyester membrane that was tightly clamped between two glass slides to form two separate flow chambers. Glass syringes, polytetrafluoroethylene tubing and glass microfluidic chips were selected to minimize surface adsorption of the studied compounds (i.e. highly lipophilic dioxins), during the transport studies. Confocal microscopy studies revealed that, upon culturing under constant flow for 7 days, Caco-2 cells formed complete and polarized monolayers as observed after culturing for 21 days under static conditions in Transwells. We exposed Caco-2 monolayers in the chip and Transwell to a mixture of 17 dioxin congeners (7 polychlorinated dibenzo-p-dioxins and 10 polychlorinated dibenzofurans) for 24 h. Gas chromatography-high resolution mass spectrometry was used to assess the cellular association and transport of individual dioxin congeners across the Caco-2 cell monolayers. After 24 h, the amount of transported dioxin mixture was similar in both the dynamic gut-on-a-chip model and the static Transwell model. The transport of individual congeners corresponded with their number of chlorine atoms and substitution patterns as revealed by quantitative structure-property relationship modelling. These results show that the gut-on-a-chip model can be used, as well as the traditional static Transwell system, to study the cellular association and transport of lipophilic compounds like dioxins.</p

    Determination of genotoxic potencies of pyrrolizidine alkaloids in HepaRG cells using the Ī³H2AX assay

    No full text
    Pyrrolizidine alkaloids (PAs) are secondary metabolites from plants that have been found in substantial amounts in herbal supplements, infusions and teas. Several PAs cause cancer in animal bioassays, mediated via a genotoxic mode of action, but for the majority of the PAs, carcinogenicity data are lacking. It is assumed in the risk assessment that all PAs have the same potency as riddelliine, which is considered to be one of the most potent carcinogenic PAs in rats. This may overestimate the risks, since many PAs are expected to have lower potencies. In this study we determined the concentration-dependent genotoxicity of 37 PAs representing different chemical classes using the Ī³H2AX in cell western assay in HepaRG human liver cells. Based on these in vitro data, PAs were grouped into different potency classes. The group with the highest potency consists particularly of open diester PAs and cyclic diester PAs (including riddelliine). The group of the least potent or non-active PAs includes the monoester PAs, non-esterified necine bases, PA N-oxides, and the unsaturated PA trachelanthamine. This study reveals differences in in vitro genotoxic potencies of PAs, supporting that the assumption that all PAs have a similar potency as riddelliine is rather conservative.</p
    corecore