4,306 research outputs found

    The real projective spaces in homotopy type theory

    Full text link
    Homotopy type theory is a version of Martin-L\"of type theory taking advantage of its homotopical models. In particular, we can use and construct objects of homotopy theory and reason about them using higher inductive types. In this article, we construct the real projective spaces, key players in homotopy theory, as certain higher inductive types in homotopy type theory. The classical definition of RP(n), as the quotient space identifying antipodal points of the n-sphere, does not translate directly to homotopy type theory. Instead, we define RP(n) by induction on n simultaneously with its tautological bundle of 2-element sets. As the base case, we take RP(-1) to be the empty type. In the inductive step, we take RP(n+1) to be the mapping cone of the projection map of the tautological bundle of RP(n), and we use its universal property and the univalence axiom to define the tautological bundle on RP(n+1). By showing that the total space of the tautological bundle of RP(n) is the n-sphere, we retrieve the classical description of RP(n+1) as RP(n) with an (n+1)-cell attached to it. The infinite dimensional real projective space, defined as the sequential colimit of the RP(n) with the canonical inclusion maps, is equivalent to the Eilenberg-MacLane space K(Z/2Z,1), which here arises as the subtype of the universe consisting of 2-element types. Indeed, the infinite dimensional projective space classifies the 0-sphere bundles, which one can think of as synthetic line bundles. These constructions in homotopy type theory further illustrate the utility of homotopy type theory, including the interplay of type theoretic and homotopy theoretic ideas.Comment: 8 pages, to appear in proceedings of LICS 201

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the ∞\infty-category of weak ∞\infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞\infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞\infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' ∞\infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an ∞\infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    Incremental Sparse Bayesian Ordinal Regression

    Get PDF
    Ordinal Regression (OR) aims to model the ordering information between different data categories, which is a crucial topic in multi-label learning. An important class of approaches to OR models the problem as a linear combination of basis functions that map features to a high dimensional non-linear space. However, most of the basis function-based algorithms are time consuming. We propose an incremental sparse Bayesian approach to OR tasks and introduce an algorithm to sequentially learn the relevant basis functions in the ordinal scenario. Our method, called Incremental Sparse Bayesian Ordinal Regression (ISBOR), automatically optimizes the hyper-parameters via the type-II maximum likelihood method. By exploiting fast marginal likelihood optimization, ISBOR can avoid big matrix inverses, which is the main bottleneck in applying basis function-based algorithms to OR tasks on large-scale datasets. We show that ISBOR can make accurate predictions with parsimonious basis functions while offering automatic estimates of the prediction uncertainty. Extensive experiments on synthetic and real word datasets demonstrate the efficiency and effectiveness of ISBOR compared to other basis function-based OR approaches

    Automatic construction of known-item finding test beds

    Get PDF
    This work is an initial study on the utility of automatically generated queries for evaluating known-item retrieval and how such queries compare to real queries. The main advantage of automatically generating queries is that for any given test collection numerous queries can be produced at minimal cost. For evaluation, this has huge ramifications as state-of-the-art algorithms can be tested on different types of generated queries which mimic particular querying styles that a user may adopt. Our approach draws upon previous research in IR which has probabilistically generated simulated queries for other purposes [2, 3]

    Differentiable Unbiased Online Learning to Rank

    Full text link
    Online Learning to Rank (OLTR) methods optimize rankers based on user interactions. State-of-the-art OLTR methods are built specifically for linear models. Their approaches do not extend well to non-linear models such as neural networks. We introduce an entirely novel approach to OLTR that constructs a weighted differentiable pairwise loss after each interaction: Pairwise Differentiable Gradient Descent (PDGD). PDGD breaks away from the traditional approach that relies on interleaving or multileaving and extensive sampling of models to estimate gradients. Instead, its gradient is based on inferring preferences between document pairs from user clicks and can optimize any differentiable model. We prove that the gradient of PDGD is unbiased w.r.t. user document pair preferences. Our experiments on the largest publicly available Learning to Rank (LTR) datasets show considerable and significant improvements under all levels of interaction noise. PDGD outperforms existing OLTR methods both in terms of learning speed as well as final convergence. Furthermore, unlike previous OLTR methods, PDGD also allows for non-linear models to be optimized effectively. Our results show that using a neural network leads to even better performance at convergence than a linear model. In summary, PDGD is an efficient and unbiased OLTR approach that provides a better user experience than previously possible.Comment: Conference on Information and Knowledge Management 201

    Optimizing Ranking Models in an Online Setting

    Get PDF
    Online Learning to Rank (OLTR) methods optimize ranking models by directly interacting with users, which allows them to be very efficient and responsive. All OLTR methods introduced during the past decade have extended on the original OLTR method: Dueling Bandit Gradient Descent (DBGD). Recently, a fundamentally different approach was introduced with the Pairwise Differentiable Gradient Descent (PDGD) algorithm. To date the only comparisons of the two approaches are limited to simulations with cascading click models and low levels of noise. The main outcome so far is that PDGD converges at higher levels of performance and learns considerably faster than DBGD-based methods. However, the PDGD algorithm assumes cascading user behavior, potentially giving it an unfair advantage. Furthermore, the robustness of both methods to high levels of noise has not been investigated. Therefore, it is unclear whether the reported advantages of PDGD over DBGD generalize to different experimental conditions. In this paper, we investigate whether the previous conclusions about the PDGD and DBGD comparison generalize from ideal to worst-case circumstances. We do so in two ways. First, we compare the theoretical properties of PDGD and DBGD, by taking a critical look at previously proven properties in the context of ranking. Second, we estimate an upper and lower bound on the performance of methods by simulating both ideal user behavior and extremely difficult behavior, i.e., almost-random non-cascading user models. Our findings show that the theoretical bounds of DBGD do not apply to any common ranking model and, furthermore, that the performance of DBGD is substantially worse than PDGD in both ideal and worst-case circumstances. These results reproduce previously published findings about the relative performance of PDGD vs. DBGD and generalize them to extremely noisy and non-cascading circumstances.Comment: European Conference on Information Retrieval (ECIR) 201

    Balancing Speed and Quality in Online Learning to Rank for Information Retrieval

    Full text link
    In Online Learning to Rank (OLTR) the aim is to find an optimal ranking model by interacting with users. When learning from user behavior, systems must interact with users while simultaneously learning from those interactions. Unlike other Learning to Rank (LTR) settings, existing research in this field has been limited to linear models. This is due to the speed-quality tradeoff that arises when selecting models: complex models are more expressive and can find the best rankings but need more user interactions to do so, a requirement that risks frustrating users during training. Conversely, simpler models can be optimized on fewer interactions and thus provide a better user experience, but they will converge towards suboptimal rankings. This tradeoff creates a deadlock, since novel models will not be able to improve either the user experience or the final convergence point, without sacrificing the other. Our contribution is twofold. First, we introduce a fast OLTR model called Sim-MGD that addresses the speed aspect of the speed-quality tradeoff. Sim-MGD ranks documents based on similarities with reference documents. It converges rapidly and, hence, gives a better user experience but it does not converge towards the optimal rankings. Second, we contribute Cascading Multileave Gradient Descent (C-MGD) for OLTR that directly addresses the speed-quality tradeoff by using a cascade that enables combinations of the best of two worlds: fast learning and high quality final convergence. C-MGD can provide the better user experience of Sim-MGD while maintaining the same convergence as the state-of-the-art MGD model. This opens the door for future work to design new models for OLTR without having to deal with the speed-quality tradeoff.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen
    • …
    corecore