1,107 research outputs found

    Physical Constraints to Aquatic Plant Growth in New Zealand Lakes

    Get PDF
    The nature of aquatic plant communities often defines benthic habitat within oligotrophic and mesotrophic lakes and lake management increasingly recognizes the importance of maintaining plant diversity in order to sustain biological diversity and capacity within lakes. We have developed simple statistical relationships between key physical and vegetation variables that define the habitat requirements, or “habitat-templates”, of key vegetation types to facilitate management of plant communities in New Zealand lakes. Statistical relationships were derived from two datasets. The first was a multi-lake dataset to determine the effects of water level fluctuation and water clarity. The second dataset was from a comprehensive shoreline survey of Lake Wanaka, which allowed us to examine within-lake variables such as beach slope and wave action. Sufficient statistical relationships were established to develop a habitat template for each of the major species or assemblages. The relationships suggested that the extent and diversity of shallow-growing species was related to a combination of the extent of water level fluctuation and wave exposure. (PDF contains 9 pages.

    Demonstration of an inductively coupled ring trap for cold atoms

    Get PDF
    We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas

    Experimental Demonstration of Optimal Unambiguous State Discrimination

    Get PDF
    We present the first full demonstration of unambiguous state discrimination between non-orthogonal quantum states. Using a novel free space interferometer we have realised the optimum quantum measurement scheme for two non-orthogonal states of light, known as the Ivanovic-Dieks-Peres (IDP) measurement. We have for the first time gained access to all three possible outcomes of this measurement. All aspects of this generalised measurement scheme, including its superiority over a standard von Neumann measurement, have been demonstrated within 1.5% of the IDP predictions

    Reduced micro-deformation attenuation in large-mode area photonic crystal fibers for visible applications

    Full text link
    We consider large-mode area photonic crystal fibers for visible applications where micro-deformation induced attenuation becomes a potential problem when the effective area A_eff is sufficiently large compared to lambda^2. We argue how a slight increase in fiber diameter D can be used in screening the high-frequency components of the micro-deformation spectrum mechanically and we confirm this experimentally for both 15 and 20 micron core fibers. For typical bending-radii (R~16 cm) the operating band-width increases by ~3-400 nm to the low-wavelength side.Comment: Accepted for Optics Letter

    Free-induction-decay magnetometer based on a microfabricated Cs vapor cell

    Get PDF
    We describe an optically pumped Cs magnetometer containing a 1.5 mm thick microfabricated vapor cell with nitrogen buffer gas operating in a free-induction-decay (FID) configuration. This allows us to monitor the free Larmor precession of the spin coherent Cs atoms by separating the pump and probe phases in the time domain. A single light pulse can sufficiently polarize the atomic sample however, synchronous modulation of the light field actively drives the precession and maximizes the induced spin coherence. Both amplitude and frequency modulation have been implemented with noise floors of 3 pT / √ Hz and 16 pT / √ Hz respectively within the Nyquist limited bandwidth of 500 Hz

    Salivary Cytokines in Healthy Adolescent Girls: Intercorrelations, Stability, and Associations with Serum Cytokines, Age and Pubertal Stage.

    Get PDF
    Theoretically, the measurement of cytokines in saliva may have utility for studies of brain, behavior, and immunity in youth. Cytokines in saliva and serum were analyzed across three annual assessments in healthy adolescent girls (N = 114, 11-17 years at enrollment). Samples were assayed for GM-CSF, IFNγ, IL-1β, IL-2, IL-6, IL-8, IL-10, IL-12p70, TNFα, adiponectin, and cotinine. Results revealed: (1) cytokine levels, except IFNγ and IL-10, were detectable in saliva, and salivary levels, except IL-8 and IL-1β, were lower than serum levels; (2) salivary cytokine levels were lower in older girls and positively associated with adiponectin; (3) compared to serum levels, the correlations between salivary cytokines were higher, but salivary cytokines were less stable across years; and (4) except for IL-1β, there were no significant serum-saliva associations. Variation in basal salivary cytokine levels in healthy adolescent girls reflect compartmentalized activity of the oral mucosal immune system, rather than systemic cytokine activity

    Low-loss criterion and effective area considerations for photonic crystal fibers

    Get PDF
    We study the class of endlessly single-mode all-silica photonic crystal fibers with a triangular air-hole cladding. We consider the sensibility to longitudinal nonuniformities and the consequences and limitations for realizing low-loss large-mode area photonic crystal fibers. We also discuss the dominating scattering mechanism and experimentally we confirm that both macro and micro-bending can be the limiting factor.Comment: Accepted for Journal of Optics A - Pure and Applied Optic

    Resonance phenomena in ultracold dipole-dipole scattering

    Full text link
    Elastic scattering resonances occurring in ultracold collisions of either bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer adiabatic representation of the two-bodydynamics provides both a qualitative classification scheme and a quantitative WKB quantization condition that predicts several sequences of resonant states. It is found that the near-threshold energy dependence of ultracold collision cross sections varies significantly with the particle exchange symmetry, with bosonic systems showing much smoother energy variations than their fermionic counterparts. Resonant variations of the angular distributions in ultracold collisions are also described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.

    Scalable Group Level Probabilistic Sparse Factor Analysis

    Full text link
    Many data-driven approaches exist to extract neural representations of functional magnetic resonance imaging (fMRI) data, but most of them lack a proper probabilistic formulation. We propose a group level scalable probabilistic sparse factor analysis (psFA) allowing spatially sparse maps, component pruning using automatic relevance determination (ARD) and subject specific heteroscedastic spatial noise modeling. For task-based and resting state fMRI, we show that the sparsity constraint gives rise to components similar to those obtained by group independent component analysis. The noise modeling shows that noise is reduced in areas typically associated with activation by the experimental design. The psFA model identifies sparse components and the probabilistic setting provides a natural way to handle parameter uncertainties. The variational Bayesian framework easily extends to more complex noise models than the presently considered.Comment: 10 pages plus 5 pages appendix, Submitted to ICASSP 1

    A note on light velocity anisotropy

    Get PDF
    It is proved that in experiments on or near the Earth, no anisotropy in the one-way velocity of light may be detected. The very accurate experiments which have been performed to detect such an effect are to be considered significant tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte
    corecore