18 research outputs found

    Geometric Approach to Digital Quantum Information

    Full text link
    We present geometric methods for uniformly discretizing the continuous N-qubit Hilbert space. When considered as the vertices of a geometrical figure, the resulting states form the equivalent of a Platonic solid. The discretization technique inherently describes a class of pi/2 rotations that connect neighboring states in the set, i.e. that leave the geometrical figures invariant. These rotations are shown to generate the Clifford group, a general group of discrete transformations on N qubits. Discretizing the N-qubit Hilbert space allows us to define its digital quantum information content, and we show that this information content grows as N^2. While we believe the discrete sets are interesting because they allow extra-classical behavior--such as quantum entanglement and quantum parallelism--to be explored while circumventing the continuity of Hilbert space, we also show how they may be a useful tool for problems in traditional quantum computation. We describe in detail the discrete sets for one and two qubits.Comment: Introduction rewritten; 'Sample Application' section added. To appear in J. of Quantum Information Processin

    Josephson Amplifier for Qubit Readout

    Full text link
    We report on measurements of a Josephson amplifier (J-amp) suitable for quantum-state qubit readout in the microwave domain. It consists of two microstrip resonators which intersect at a Josephson ring modulator. A maximum gain of about 20 dB, a bandwidth of 9 MHz, and a center-frequency tunability of about 60 MHz with gain in excess of 10 dB have been attained for idler and signal of frequencies 6.4 GHz and 8.1 GHz, in accordance with theory. Maximum input power measurements of the J-amp show a relatively good agreement with theoretical prediction. We discuss how the amplifier characteristics can be improved.Comment: 9 pages, 4 figure

    Protocol for universal gates in optimally biased superconducting qubits

    Full text link
    We present a new experimental protocol for performing universal gates in a register of superconducting qubits coupled by fixed on-chip linear reactances. The qubits have fixed, detuned Larmor frequencies and can remain, during the entire gate operation, biased at their optimal working point where decoherence due to fluctuations in control parameters is suppressed to first order. Two-qubit gates are performed by simultaneously irradiating two qubits at their respective Larmor frequencies with appropriate amplitude and phase, while one-qubit gates are performed by the usual single-qubit irradiation pulses

    A simple all-microwave entangling gate for fixed-frequency superconducting qubits

    Full text link
    We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88 and quantum process tomography reveals a gate fidelity of 81%
    corecore