We demonstrate an all-microwave two-qubit gate on superconducting qubits
which are fixed in frequency at optimal bias points. The gate requires no
additional subcircuitry and is tunable via the amplitude of microwave
irradiation on one qubit at the transition frequency of the other. We use the
gate to generate entangled states with a maximal extracted concurrence of 0.88
and quantum process tomography reveals a gate fidelity of 81%