6 research outputs found

    A flexible scintillation light apparatus for rare events searches

    Get PDF
    FLARES (a Flexible scintillation Light Apparatus for Rare Event Searches) is a project for an innovative detector technology to be applied to rare event searches, and in particular to neutrinoless double beta decay experiments. Its novelty is the enhancement and optimization of the collection of the scintillation light emitted by ultra-pure crystals through the use of arrays of high performance silicon photodetectors cooled to 120 K. This would provide scintillation detectors with ∼1% level energy resolution, with the advantages of a technology offering relatively simple low cost mass scalability and powerful background reduction handles, as requested by future neutrinoless double beta decay experimental programs

    Probing surfaces with thermal He atoms: scattering and microscopy with a soft touch

    No full text
    Helium atom scattering (HAS) is a well established technique, particularly suited for the investigation of insulating and/or fragile materials and light adsorbates including hydrogen. In contrast to other beam techniques based on Xrays or electrons, low energy (typically less than 100 meV) He atoms are scattered by the tail of the electron density distribution which spill out from a surface, therefore HAS is strictly a nonpenetrating technique without any sample damage. HAS has been used to investigate structural properties of crystalline surfaces, including precise determination of atomic step heights, for monitoring thin film growth, to study surface transitions such as surface melting and roughening and for determining the presence and properties of adsorbates. Energy resolved HAS can provide information about surface vibrations (phonons) in the meV range and surface diffusion. This chapter provides a brief introduction to HAS with an outlook on a new, promising surface science technique: Neutral Helium Microscopy

    Ab Initio Molecular Dynamics Study of the AlOOH Boehmite/Water Interface: Role of Steps in Interfacial Grotthus Proton Transfers

    No full text
    corecore