1,549 research outputs found

    Oligonuclear Metal Complexes with Schiff Base Ligands

    Get PDF
    : As stated by two of the seven papers [...]

    Nouvelle régulation concurrentielle et nouveaux jeux de proximités. Les associations d’aide à la personne à la reconquête de leur légitimité territoriale

    Get PDF
    The French home care services, organized around non-for-profit organizations, have been changed by the introduction of a new competitive regulation in 2005. Previously, these organizations were agreeing to share territories. They were benefiting from a strong territorial legitimacy, thus constituting territorial monopolies. These monopolies were based on both geographical and organized proximities, linked to the geographical constraints of such an activity and to the historical ties developed with local actors. Face to competition, their territorial legitimacy is today at stake. This article shows that non-for-profit organizations seek to establish their legitimacy by developing new proximity arrangements according to the departmental different policies and to the competitive intensity resulting from these policies. So the organized proximity is crucial in this process. It can be based on one hand on non-rivalry and non-intrusion agreements. On the other hand it can rely on rules aiming at the absorption of the weakest non-for-profit organizations

    Life cycle assessment of a floating offshore wind farm in Italy

    Get PDF
    Mitigation of climate change requires consistent actions toward the reduction of emissions from the energy sector: in the last years, renewable energy technologies, such as wind power, have become a cost-effective option to pursue the transition to low emission systems for power generation. Offshore wind energy can provide access to additional wind resources, also overcoming some issues related to onshore wind deployments such as land-use competition and social acceptability. The Life Cycle Assessment (LCA) methodology can be used to gain insight into the environmental performances of different technologies, e.g. renewable energy generation technologies, along the lifecycle stages and across a number of impact categories. This paper reports the cradle-to-grave LCA of a floating offshore wind farm, consisting of 190 wind turbines with 14.7 MW rated power, intended to be deployed in the Mediterranean Sea. The employed technology is represented by the IEA 15 MW reference wind turbine supported by the reference semi-submersible platform. The selected functional unit is the delivery of 1 GWh of electricity to the onshore grid and the impact assessment method is the EPD (version 2018), which is usually used for the creation of Environmental Product Declarations (EPDs) and considers 8 impact categories. The results of the analysis show that the supply of raw materials, especially steel, for aerogenerators and floaters is the most significant contributor to the overall potential impacts in all the impact categories, except for abiotic depletion of elements, where power cables are the hotspot. In the perspective of decarbonisation, the estimated carbon intensity is 31 g CO2eq/kWh and so it results competitive with other low emissions electricity generation technologies. To compare the estimated global warming impacts to other studies, some harmonisations efforts on capacity factor and lifetime of turbines are made. Moreover, the wind farm performance has been evaluated in terms of carbon and energy payback time, estimated in 2 and 3 years respectively, showing a substantial benefit when compared to the expected 30-year lifetime. As a conclusion, despite the number of approximations and conservative assumptions, floating offshore wind power, represented by the modelled case study, can be considered a promising technology and has been found to be already competitive with other renewable electricity generation technologies. Future research should address the uncertainty rooted to the data: repeating the analysis relying on the executive project, and therefore on a more detailed modelling, would help to get more accurate results

    Ex-ante life cycle assessment of FineFuture flotation technology: case study of Grecian Magnesite

    Get PDF
    Purpose This study aims at evaluating the environmental performance of a novel froth flotation technology in mining industry from a life cycle perspective. The technology is being developed under EU Horizon 2020 project titled "FineFuture" (FF) with the aim of saving valuable materials in fine particles that are currently wasted due to lack of technology.Methods FF relies on chemically enhancing the physical characteristics of particles allowing it to float and concentrate. Prospective life cycle assessment (pLCA) was conducted for two possible industrial applications of FF flotation technology in the case study of Grecian Magnesite (GM) which is a main magnesium oxide producer in Europe. Each application can be perceived as a standalone comparative LCA study comparing current system with future system incorporating FF technology on industrial scale.Results and discussion The future scenarios did not decisively support FF technology in neither of the two applications from an environmental point of view. When applied to fines of < 4 mm granular size with the aim of material recovery, the future scenario performed better than the current situation only in 5 out of 16 impact categories. The main issue is the added burden of calcination phase. When the technology was tested to upgrade the existing magnesite concentrate before calcination, it introduced some gains in most of the impact categories, but the difference compared to the current situation is not very considerable. Testing improved scenarios showed a great benefit to the overall performance of the scenarios by introducing cleaner fuels and burners in calcination phase.Conclusion and recommendations Overall, the results tend to favour applying FF technology to upgrade low quality concentrates rather than beneficiating < 4 mm fines. However, and in any case, if FF technology is to be applied, combining it with cleaner fuels and burners in calcination should be prioritized. Furthermore, it was found that improving the purity (i.e. quality) in the flotation tank output is a key factor from an environmental view. The results also showed little impact of the added electric energy demand from the new units. As any pLCA, the study has limitations mainly originating from the low technology readiness level (TRL) when data collection activities were carried out. Further studies should start from pilot-scale data and adopting more accurate upscaling approaches to calculate the impacts of a full industrial deployment of the technology
    • …
    corecore