5 research outputs found

    Crystallization and preliminary crystallographic study of a component of the Escherichia coli tol system: TolB.

    No full text
    International audienceTolB from Escherichia coli is part of the Tol system used by the group A colicins to penetrate and kill cells. A TolB derivative tagged with six histidines was overexpressed, purified by chelation on a nickel affinity column and crystallized using the SAmBA software to define the optimal crystallization protocol. The crystals belong to the monoclinic system, space group P21 with unit-cell parameters a = 64.48, b = 41.06, c = 78.41 A, beta = 110.78 degrees. Frozen crystals diffract to 1.9 A resolution. Screening for heavy-atom derivatives both on the native TolB and various cysteine-substituted mutants is in progress. In addition, a selenomethionine-substituted protein is being produced in order to use the MAD method for structure determination

    Crystallization and preliminary crystallographic study of a component of the Escherichia coli tol system: TolB.

    No full text
    International audienceTolB from Escherichia coli is part of the Tol system used by the group A colicins to penetrate and kill cells. A TolB derivative tagged with six histidines was overexpressed, purified by chelation on a nickel affinity column and crystallized using the SAmBA software to define the optimal crystallization protocol. The crystals belong to the monoclinic system, space group P21 with unit-cell parameters a = 64.48, b = 41.06, c = 78.41 A, beta = 110.78 degrees. Frozen crystals diffract to 1.9 A resolution. Screening for heavy-atom derivatives both on the native TolB and various cysteine-substituted mutants is in progress. In addition, a selenomethionine-substituted protein is being produced in order to use the MAD method for structure determination

    Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution.

    No full text
    International audienceThe periplasmic protein TolB from Escherichia coli is part of the Tol-PAL (peptidoglycan-associated lipoprotein) multiprotein complex used by group A colicins to penetrate and kill cells. TolB homologues are found in many gram-negative bacteria and the Tol-PAL system is thought to play a role in bacterial envelope integrity. TolB is required for lethal infection by Salmonella typhimurium in mice

    PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator-dependent autoimmunity

    No full text
    Background PRKDC encodes for DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a kinase that forms part of a complex (DNA-dependent protein kinase [DNA-PK]) crucial for DNA double-strand break repair and V(D)J recombination. In mice DNA-PK also interacts with the transcription factor autoimmune regulator (AIRE) to promote central T-cell tolerance. Objective We sought to understand the causes of an inflammatory disease with granuloma and autoimmunity associated with decreasing T- and B-cell counts over time that had been diagnosed in 2 unrelated patients. Methods Genetic, molecular, and functional analyses were performed to characterize an inflammatory disease evocative of a combined immunodeficiency. Results We identified PRKDC mutations in both patients. These patients exhibited a defect in DNA double-strand break repair and V(D)J recombination. Whole-blood mRNA analysis revealed a strong interferon signature. On activation, memory T cells displayed a skewed cytokine response typical of TH2 and TH1 but not TH17. Moreover, mutated DNA-PKcs did not promote AIRE-dependent transcription of peripheral tissue antigens in vitro. The latter defect correlated in vivo with production of anti-calcium-sensing receptor autoantibodies, which are typically found in AIRE-deficient patients. In addition, 9 months after bone marrow transplantation, patient 1 had Hashimoto thyroiditis, suggesting that organ-specific autoimmunity might be linked to nonhematopoietic cells, such as AIRE-expressing thymic epithelial cells. Conclusion Deficiency of DNA-PKcs, a key AIRE partner, can present as an inflammatory disease with organ-specific autoimmunity, suggesting a role for DNA-PKcs in regulating autoimmune responses and maintaining AIRE-dependent tolerance in human subjects
    corecore