28 research outputs found

    Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy

    Get PDF
    Atherosclerosis, the principle cause of cardiovascular disease (CVD) worldwide, is mainly characterized by the pathological accumulation of diseased vascular cells and apoptotic cellular debris. Atherogenesis is associated with the upregulation of CD47, a key antiphagocytic molecule that is known to render malignant cells resistant to programmed cell removal, or "efferocytosis." Here, we have developed platelet membrane-coated mesoporous silicon nanoparticles (PMSN) as a drug delivery system to target atherosclerotic plaques with the delivery of an anti-CD47 antibody. Briefly, the cell membrane coat prolonged the circulation of the particles by evading the immune recognition and provided an affinity to plaques and atherosclerotic sites. The anti-CD47 antibody then normalized the clearance of diseased vascular tissue and further ameliorated atherosclerosis by blocking CD47. In an atherosclerosis model established in ApoE-/- mice, PMSN encapsulating anti-CD47 antibody delivery significantly promoted the efferocytosis of necrotic cells in plaques. Clearing the necrotic cells greatly reduced the atherosclerotic plaque area and stabilized the plaques reducing the risk of plaque rupture and advanced thrombosis. Overall, this study demonstrated the therapeutic advantages of PMSN encapsulating anti-CD47 antibodies for atherosclerosis therapy, which holds considerable promise as a new targeted drug delivery platform for efficient therapy of atherosclerosis

    A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants

    Get PDF
    Interrelated coagulation and inflammation are impediments to endothelialization, a prerequisite for the longterm function of cardiovascular materials. Here, we proposed a self-regulating anticoagulant coating strategy combined with anti-inflammatory capacity, which consisted of thrombin-responsive nanogels with anticoagulant and anti-inflammatory components. As an anticoagulant, rivaroxaban was encapsulated in nanogels cross-linked by thrombin-cleavable peptide and released upon the trigger of environmental thrombin, blocking the further coagulation cascade. The superoxide dismutase mimetic Tempol imparted the antioxidant property. Polyphenol epigallocatechin gallate (EGCG), in addition to its anti-inflammatory function in synergy with Tempol, also acted as a weak cross-linker to stabilize the coating. The effectiveness and versatility of this coating were validated using two typical cardiovascular devices as models, biological valves and vascular stents. It was demonstrated that the coating worked as a precise strategy to resist coagulation and inflammation, escorted reendothelialization on the cardiovascular devices, and provided a new perspective for designing endothelium-like functional coatings

    A review of the development of interventional devices for mitral valve repair with the implantation of artificial chords

    Get PDF
    Mitral regurgitation (MR) was the most common heart valve disease. Surgical repair with artificial chordal replacement had become one of the standard treatments for mitral regurgitation. Expanded polytetrafluoroethylene (ePTFE) was currently the most commonly used artificial chordae material due to its unique physicochemical and biocompatible properties. Interventional artificial chordal implantation techniques had emerged as an alternative treatment option for physicians and patients in treating mitral regurgitation. Using either a transapical or a transcatheter approach with interventional devices, a chordal replacement could be performed transcatheter in the beating heart without cardiopulmonary bypass, and the acute effect on the resolution of mitral regurgitation could be monitored in real-time by transesophageal echo imaging during the procedure. Despite the in vitro durability of the expanded polytetrafluoroethylene material, artificial chordal rupture occasionally occurred. In this article, we reviewed the development and therapeutic results of interventional devices for chordal implantation and discuss the possible clinical factors responsible for the rupture of the artificial chordal material

    Preliminary Application of Vermicompost in Rice Production: Effects of Nursery Raising with Vermicompost on Fragrant Rice Performances

    No full text
    Vermicompost is an excellent organic fertilizer, but the application of vermicompost in fragrant rice production has not yet been reported. Seedling nursery is an important component of rice production. The present study firstly applied vermicompost in fragrant rice production through nursery raising. The seedlings of three fragrant rice cultivars were raised in matrix with different rations of vermicompost (the treatment without vermicompost was taken as the control), and the growth parameters and physiological characters of seedlings were investigated. The results showed that, compared with the control, the application of vermicompost significantly (p < 0.05) increased the plant height, stem diameter, fresh weight, and dry weight of fragrant rice seedlings by 11.22–24.73%, 38.34–65.87%, 16.74–30.46%, and 16.61–35.16%, respectively. Nursery raising with vermicompost significantly (p < 0.05) enhanced the net photosynthetic rate by 5.99–12.93%, relative to the control. Higher contents of chlorophyll a, chlorophyll b, carotenoids, and total chlorophyll were recorded in vermicompost treatments than in the control. Compared with the control, vermicompost treatments also increased root length, surface area, mean diameter, root volume, root tip number, and root activity of fragrant rice seedlings by 12.42–27.82%, 15.04–38.65%, 12.64–23.12%, 42.41–63.58%, 18.62–24.95%, and 12.01–26.29%, respectively. Moreover, nursery raising with vermicompost enhanced the activities of antioxidant enzymes including superoxide, peroxidase, and catalase by 7.97–24.21%, 17.11–44.99%, and 7.37–15.95%, respectively, relative to the control. Moreover, 7.92–29.40% lower malondialdehyde contents were recorded in vermicompost treatments compared with the control. Therefore, nursery raising with vermicompost could be a good agronomy practice in machine-transplanted fragrant rice

    Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    No full text
    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels

    Agronomic Performances of Fragrant Rice Cultivars under Different Vermicompost Rates

    No full text
    Vermicompost is an organic fertilizer with high microbiological activity. However, the application of vermicompost in fragrant rice production and the effects of vermicompost rates on fragrant rice performances have not been reported. The present study conducted a field experiment with two cropping lugs to investigate the agronomic performances of fragrant rice cultivars under different vermicompost rates. Five vermicompost rates, i.e., 2.250 (Ver1), 3.000 (Ver2), 3.750 (Ver3), 4.8750 (Ver4), and 6.000 (Ver5) t ha−1, were adopted and a treatment without any fertilizer applied was taken as control (CK). The results showed that the application of vermicompost significantly increased the grain yield of fragrant rice, while the highest or equally highest yield was recorded in the Ver2 treatment. Similar trends were observed in dry matter weight at 80 and 100 days after transplanting. However, the vermicompost didn’t have remarkable effects on chlorophyll content and grain 2-acetyl-1-pyrroline (the key component of fragrant rice aroma) content. The effects of different vermicompost rates on grain quality characters were unstable and irregular across the cropping lugs, although Ver1 and Ver2 treatment exhibited relatively good grain quality with lower amylose content and higher protein content. In the present study, the recommended amount of vermicompost was 3.0 t ha−1 in fragrant rice production

    Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    No full text
    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels

    Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    No full text
    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels
    corecore