73 research outputs found

    Extending Bauer's corollary to fractional derivatives

    Full text link
    We comment on the method of Dreisigmeyer and Young [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems with fractional derivatives. It was previously hoped that using fractional derivatives in an action would allow us to derive a single retarded equation of motion using a variational principle. It is proven that, under certain reasonable assumptions, the method of Dreisigmeyer and Young fails.Comment: Accepted Journal of Physics A at www.iop.org/EJ/journal/JPhys

    Nonconservative Lagrangian mechanics II: purely causal equations of motion

    Full text link
    This work builds on the Volterra series formalism presented in [D. W. Dreisigmeyer and P. M. Young, J. Phys. A \textbf{36}, 8297, (2003)] to model nonconservative systems. Here we treat Lagrangians and actions as `time dependent' Volterra series. We present a new family of kernels to be used in these Volterra series that allow us to derive a single retarded equation of motion using a variational principle

    Time-Fractional KdV Equation: Formulation and Solution using Variational Methods

    Full text link
    In this work, the semi-inverse method has been used to derive the Lagrangian of the Korteweg-de Vries (KdV) equation. Then, the time operator of the Lagrangian of the KdV equation has been transformed into fractional domain in terms of the left-Riemann-Liouville fractional differential operator. The variational of the functional of this Lagrangian leads neatly to Euler-Lagrange equation. Via Agrawal's method, one can easily derive the time-fractional KdV equation from this Euler-Lagrange equation. Remarkably, the time-fractional term in the resulting KdV equation is obtained in Riesz fractional derivative in a direct manner. As a second step, the derived time-fractional KdV equation is solved using He's variational-iteration method. The calculations are carried out using initial condition depends on the nonlinear and dispersion coefficients of the KdV equation. We remark that more pronounced effects and deeper insight into the formation and properties of the resulting solitary wave by additionally considering the fractional order derivative beside the nonlinearity and dispersion terms.Comment: The paper has been rewritten, 12 pages, 3 figure

    Kinematics and hydrodynamics of spinning particles

    Full text link
    In the first part (Sections 1 and 2) of this paper --starting from the Pauli current, in the ordinary tensorial language-- we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: (i) the "classical part, that is, the 3-velocity w = p/m OF the center-of-mass (CM), and (ii) the so-called "quantum" part, that is, the 3-velocity V of the motion IN the CM frame (namely, the internal "spin motion" or zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (i.e., newtonian) lagrangian, we straightforwardly get the appearance of the so-called "quantum potential" associated, as it is known, with the Madelung fluid. This result carries further evidence that the quantum behaviour of micro-systems can be adirect consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total 3-velocity v = w + V, it being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v^mu for spinning particles has to be the proper time tau of the CM frame. Inserting the correct Lorentz factor into the definition of v^mu leads to completely new kinematical properties for v_mu v^mu. The important constraint p_mu v^mu = m, identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way.Comment: LaTeX file; needs kapproc.st

    Fractional Dynamics of Relativistic Particle

    Full text link
    Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\mu} u^{\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered

    Geometry and field theory in multi-fractional spacetime

    Full text link
    We construct a theory of fields living on continuous geometries with fractional Hausdorff and spectral dimensions, focussing on a flat background analogous to Minkowski spacetime. After reviewing the properties of fractional spaces with fixed dimension, presented in a companion paper, we generalize to a multi-fractional scenario inspired by multi-fractal geometry, where the dimension changes with the scale. This is related to the renormalization group properties of fractional field theories, illustrated by the example of a scalar field. Depending on the symmetries of the Lagrangian, one can define two models. In one of them, the effective dimension flows from 2 in the ultraviolet (UV) and geometry constrains the infrared limit to be four-dimensional. At the UV critical value, the model is rendered power-counting renormalizable. However, this is not the most fundamental regime. Compelling arguments of fractal geometry require an extension of the fractional action measure to complex order. In doing so, we obtain a hierarchy of scales characterizing different geometric regimes. At very small scales, discrete symmetries emerge and the notion of a continuous spacetime begins to blur, until one reaches a fundamental scale and an ultra-microscopic fractal structure. This fine hierarchy of geometries has implications for non-commutative theories and discrete quantum gravity. In the latter case, the present model can be viewed as a top-down realization of a quantum-discrete to classical-continuum transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and improved (especially section 4.5), typos corrected, references added; v4: further typos correcte

    Forage and animal production programs for southeast Texas

    No full text
    Last updated: 7/17/201

    Principles of grazing management

    No full text
    Last updated: 7/17/201

    Principles of grazing management

    No full text
    Last updated: 7/17/201
    corecore