48 research outputs found
Recommended from our members
Radiation-induced charge trapping in bipolar base oxides
Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields
Recommended from our members
The Role of Electron Transport and Trapping in MOS Total-Dose Modeling
Deep and shallow electron traps form in irradiated thermal SiO{sub 2} as a natural response to hole transport and trapping. The density and stability of these defects are discussed, as are their implications for total-dose modeling
Kinematics and hydrodynamics of spinning particles
In the first part (Sections 1 and 2) of this paper --starting from the Pauli
current, in the ordinary tensorial language-- we obtain the decomposition of
the non-relativistic field velocity into two orthogonal parts: (i) the
"classical part, that is, the 3-velocity w = p/m OF the center-of-mass (CM),
and (ii) the so-called "quantum" part, that is, the 3-velocity V of the motion
IN the CM frame (namely, the internal "spin motion" or zitterbewegung). By
inserting such a complete, composite expression of the velocity into the
kinetic energy term of the non-relativistic classical (i.e., newtonian)
lagrangian, we straightforwardly get the appearance of the so-called "quantum
potential" associated, as it is known, with the Madelung fluid. This result
carries further evidence that the quantum behaviour of micro-systems can be
adirect consequence of the fundamental existence of spin. In the second part
(Sections 3 and 4), we fix our attention on the total 3-velocity v = w + V, it
being now necessary to pass to relativistic (classical) physics; and we show
that the proper time entering the definition of the four-velocity v^mu for
spinning particles has to be the proper time tau of the CM frame. Inserting the
correct Lorentz factor into the definition of v^mu leads to completely new
kinematical properties for v_mu v^mu. The important constraint p_mu v^mu = m,
identically true for scalar particles, but just assumed a priori in all
previous spinning particle theories, is herein derived in a self-consistent
way.Comment: LaTeX file; needs kapproc.st
Geometry and field theory in multi-fractional spacetime
We construct a theory of fields living on continuous geometries with
fractional Hausdorff and spectral dimensions, focussing on a flat background
analogous to Minkowski spacetime. After reviewing the properties of fractional
spaces with fixed dimension, presented in a companion paper, we generalize to a
multi-fractional scenario inspired by multi-fractal geometry, where the
dimension changes with the scale. This is related to the renormalization group
properties of fractional field theories, illustrated by the example of a scalar
field. Depending on the symmetries of the Lagrangian, one can define two
models. In one of them, the effective dimension flows from 2 in the ultraviolet
(UV) and geometry constrains the infrared limit to be four-dimensional. At the
UV critical value, the model is rendered power-counting renormalizable.
However, this is not the most fundamental regime. Compelling arguments of
fractal geometry require an extension of the fractional action measure to
complex order. In doing so, we obtain a hierarchy of scales characterizing
different geometric regimes. At very small scales, discrete symmetries emerge
and the notion of a continuous spacetime begins to blur, until one reaches a
fundamental scale and an ultra-microscopic fractal structure. This fine
hierarchy of geometries has implications for non-commutative theories and
discrete quantum gravity. In the latter case, the present model can be viewed
as a top-down realization of a quantum-discrete to classical-continuum
transition.Comment: 1+82 pages, 1 figure, 2 tables. v2-3: discussions clarified and
improved (especially section 4.5), typos corrected, references added; v4:
further typos correcte
Recommended from our members
Effects of irradiation and isochronal anneal temperature on hole and electron trapping in MOS devices
Capacitance-voltage and thermally-stimulated-current techniques are used to estimate trapped hole and electron densities in MOS oxides as functions of irradiation and isochronal anneal temperature. Trapped-charge annealing and compensation effects are discussed
Recommended from our members
Fast and slow border traps in MOS devices
In this paper we apply a ``dual-transistor border-trap`` (DTBT) technique that combines high-frequency charge-pumping and lower-frequency threshold-voltage measurements to estimate bulk-oxide-trap, interface-trap, and border-trap densities in irradiated MOS transistors. This method takes advantage of the different time scales in which interface traps and border traps exchange charge with the Si to obtain an estimate of the density of faster border traps often mistaken for interface traps. Effects of slower border traps are also inferred from changes in the ``bulk`` oxide-trap charge density through switched-bias annealing. To our knowledge, this is the first time fast and slow border-trap effects have been separated quantitatively in MOS devices. Possible microstructures for fast and slow border traps are suggested