50 research outputs found

    Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alfalfa, [<it>Medicago sativa </it>(L.) sativa], a widely-grown perennial forage has potential for development as a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript profiling.</p> <p>Results</p> <p>Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations compared to cell walls in stems of genotype 773. Using the Illumina GA-II platform, a total of 198,861,304 expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (<it>Medicago sativa</it>) gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST sequences, and the <it>de novo </it>assembled Illumina sequences. MSGI 1.0 contains 124,025 unique sequences including 22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall composition in stems of the two genotypes.</p> <p>Conclusions</p> <p>Our results demonstrate that RNA-Seq can be successfully used for gene identification, polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to improve alfalfa as a forage crop and cellulosic feedstock.</p

    Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast.

    No full text
    Active loading of the phloem with sucrose in leaves is an essential part of the process of supplying non-photosynthetic tissues with carbon and energy. The transport is protein mediated and coupled to proton-symport, but so far no sucrose carrier gene has been identified. Using an engineered Saccharomyces cerevisiae strain, a cDNA from spinach encoding a sucrose carrier was identified by functional expression. Yeast strains that allow the phenotypic recognition of a sucrose carrier activity were constructed by expressing a cytoplasmic invertase from yeast, or the potato sucrose synthase gene, in a strain unable to transport or grow on sucrose due to a deletion in the SUC2 gene. A spinach cDNA expression library established from the poly(A)+ RNA from source leaves of spinach and cloned in a yeast expression vector yielded transformed yeast clones which were able to grow on media containing sucrose as the sole carbon source. This ability was strictly linked to the presence of the spinach cDNA clone pS21. Analysis of the sucrose uptake process in yeast strains transformed with this plasmid show a pH-dependent uptake of sucrose with a Km of 1.5 mM, which can be inhibited by maltose, alpha-phenylglucoside, carbonyl cyanide m-chlorophenylhydrazone and p-chloromercuribenzenesulfonic acid. These data are in accordance with measurements using both leaf discs and plasma membrane vesicles from leaves of higher plants. DNA sequence analysis of the pS21 clone reveals the presence of an open reading frame encoding a protein with a molecular mass of 55 kDa. The predicted protein contains several hydrophobic regions which could be assigned to 12 membrane-spanning regions.(ABSTRACT TRUNCATED AT 250 WORDS

    Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning.

    No full text
    Sucrose is the principal transport form of assimilates in most plants. In many species, translocation of assimilates from the mesophyll into the phloem for long distance transport is assumed to be carrier mediated. A putative sucrose proton cotransporter cDNA has been isolated from potato and shown to be expressed mainly in the phloem of mature exporting leaves. To study the in vivo role and function of the protein, potato plants were transformed with an antisense construct of the sucrose transporter cDNA under control of the CaMV 35S promoter. Upon maturation of the leaves, five transformants that expressed reduced levels of sucrose transporter mRNA developed local bleaching and curling of leaves. These leaves contained > 20-fold higher concentrations of soluble carbohydrates and showed a 5-fold increase in starch content as compared with wild type plants, as expected from a block in export. Transgenic plants with a reduced amount of sucrose carrier mRNA show a dramatic reduction in root development and tuber yield. Maximal photosynthetic activity was reduced at least in the strongly affected transformants. The effects observed in the antisense plants strongly support an apoplastic model for phloem loading, in which the sucrose transporter located at the phloem plasma membrane represents the primary route for sugar uptake into the long distance distribution network
    corecore