3 research outputs found

    A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks

    Get PDF
    Despite the continuing progress made toward mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase-binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe and report that the dialdehyde-based probes possess a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we developed a crosslinking scheme based on a kinase activity-based probe, and this crosslinker provides an increase in efficiency and substrate specificity, including in the context of cell lysate
    corecore