11 research outputs found

    Pharmacy Practice and Education in Latvia

    Get PDF
    The PHARMINE (“Pharmacy Education in Europe”) project studied the organisation of pharmacy practice and education in the member states of the European Union (EU). The work was carried out using an electronic survey sent to chosen pharmacy representatives. The surveys of the individual member states are now being published as reference documents. This paper presents the results of the PHARMINE survey on pharmacy practice and education in Latvia. In the light of this, we examine the harmonisation of practice and education in Latvia with EU norms.publishersversionPeer reviewe

    Primary culture of avian embryonic heart forming region cells to study the regulation of vertebrate early heart morphogenesis by vitamin A

    Get PDF
    Copyright: Copyright 2014 Elsevier B.V., All rights reserved.Background: Important knowledge about the role of vitamin A in vertebrate heart development has been obtained using the vitamin A-deficient avian in ovo model which enables the in vivo examination of very early stages of vertebrate heart morphogenesis. These studies have revealed the critical role of the vitamin A-active form, retinoic acid (RA) in the regulation of several developmental genes, including the important growth regulatory factor, transforming growth factor-beta2 (TGFβ2), involved in early events of heart morphogenesis. However, this in ovo model is not readily available for elucidating details of molecular mechanisms determining RA activity, thus limiting further examination of RA-regulated early heart morphogenesis. In order to obtain insights into RA-regulated gene expression during these early events, a reliable in vitro model is needed. Here we describe a cell culture that closely reproduces the in ovo observed regulatory effects of RA on TGFβ2 and on several developmental genes linked to TGFβ signaling during heart morphogenesis. Results: We have developed an avian heart forming region (HFR) cell based in vitro model that displays the characteristics associated with vertebrate early heart morphogenesis, i.e. the expression of Nkx2.5 and GATA4, the cardiogenesis genes, of vascular endothelial growth factor (VEGF-A), the vasculogenesis gene and of fibronectin (FN1), an essential component in building the heart, and the expression of the multifunctional genes TGFβ2 and neogenin (NEO). Importantly, we established that the HFR cell culture is a valid model to study RA-regulated molecular events during heart morphogenesis and that the expression of TGFβ2 as well as the expression of several TGFβ2-linked developmental genes is regulated by RA. Conclusions: Our findings reported here offer a biologically relevant experimental in vitro system for the elucidation of RA-regulated expression of TGFβ2 and other genes involved in vertebrate early cardiovascular morphogenesis.publishersversionPeer reviewe

    Schwann Cells in Digestive System Disorders

    No full text
    Proper functioning of the digestive system is ensured by coordinated action of the central and peripheral nervous systems (PNS). Peripheral innervation of the digestive system can be viewed as intrinsic and extrinsic. The intrinsic portion is mainly composed of the neurons and glia of the enteric nervous system (ENS), while the extrinsic part is formed by sympathetic, parasympathetic, and sensory branches of the PNS. Glial cells are a crucial component of digestive tract innervation, and a great deal of research evidence highlights the important status of ENS glia in health and disease. In this review, we shift the focus a bit and discuss the functions of Schwann cells (SCs), the glial cells of the extrinsic innervation of the digestive system. For more context, we also provide information on the basic findings regarding the function of innervation in disorders of the digestive organs. We find diverse SC roles described particularly in the mouth, the pancreas, and the intestine. We note that most of the scientific evidence concerns the involvement of SCs in cancer progression and pain, but some research identifies stem cell functions and potential for regenerative medicine

    Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells

    No full text
    We created a 3D cell co-culture model by combining nanoengineered mesenchymal stem cells (MSCs) with the metastatic breast cancer cell line MDA-MD-231 and primary breast cancer cell line MCF7 to explore the transfer of quantum dots (QDs) to cancer cells. First, the optimal conditions for high-content QD loading in MSCs were established. Then, QD uptake in breast cancer cells was assessed after 24 h in a 3D co-culture with nanoengineered MSCs. We found that incubation of MSCs with QDs in a serum-free medium provided the best accumulation results. It was found that 24 h post-labelling QDs were eliminated from MSCs. Our results demonstrate that breast cancer cells efficiently uptake QDs that are released from nanoengineered MSCs in a 3D co-culture. Moreover, the uptake is considerably enhanced in metastatic MDA-MB-231 cells compared with MCF7 primary breast cancer cells. Our findings suggest that nanoengineered MSCs could serve as a vehicle for targeted drug delivery to metastatic cancer

    Injury-activated glial cells promote wound healing of the adult skin in mice

    Get PDF
    Cutaneous wound healing is a complex process that aims to re-establish the original structure of the skin and its functions. Among other disorders, peripheral neuropathies are known to severely impair wound healing capabilities of the skin, revealing the importance of skin innervation for proper repair. Here, we report that peripheral glia are crucially involved in this process. Using a mouse model of wound healing, combined with in vivo fate mapping, we show that injury activates peripheral glia by promoting de-differentiation, cell-cycle re-entry and dissemination of the cells into the wound bed. Moreover, injury-activated glia upregulate the expression of many secreted factors previously associated with wound healing and promote myofibroblast differentiation by paracrine modulation of TGF-β signalling. Accordingly, depletion of these cells impairs epithelial proliferation and wound closure through contraction, while their expansion promotes myofibroblast formation. Thus, injury-activated glia and/or their secretome might have therapeutic potential in human wound healing disorders

    Nano-engineered skin mesenchymal stem cells: potential vehicles for tumour-targeted quantum-dot delivery

    No full text
    Nanotechnology-based drug design offers new possibilities for the use of nanoparticles in imaging and targeted therapy of tumours. Due to their tumour-homing ability, nano-engineered mesenchymal stem cells (MSCs) could be utilized as vectors to deliver diagnostic and therapeutic nanoparticles into a tumour. In the present study, uptake and functional effects of carboxyl-coated quantum dots QD655 were studied in human skin MSCs. The effect of QD on MSCs was examined using a cell viability assay, Ki67 expression analysis, and tri-lineage differentiation assay. The optimal conditions for QD uptake in MSCs were determined using flow cytometry. The QD uptake route in MSCs was examined via fluorescence imaging using endocytosis inhibitors for the micropinocytosis, phagocytosis, lipid-raft, clathrin- and caveolin-dependent endocytosis pathways. These data showed that QDs were efficiently accumulated in the cytoplasm of MSCs after incubation for 6 h. The main uptake route of QDs in skin MSCs was clathrin-mediated endocytosis. QDs were mainly localized in early endosomes after 6 h as well as in late endosomes and lysosomes after 24 h. QDs in concentrations ranging from 0.5 to 64 nM had no effect on cell viability and proliferation. The expression of MSC markers, CD73 and CD90, and hematopoietic markers, CD34 and CD45, as well as the ability to differentiate into adipocytes, chondrocytes, and osteocytes, were not altered in the presence of QDs. We observed a decrease in the QD signal from labelled MSCs over time that could partly reflect QD excretion. Altogether, these data suggest that QD-labelled MSCs could be used for targeted drug delivery studies

    DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells

    Get PDF
    Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G(2)M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fraction. Phosphorylated CHK2 and RAD51/γH2AX-positive nuclear foci, overexpression of AURORA B kinase and moderate macroautophagy were evident. Upon release from G(2)M arrest, cells with repaired DNA entered mitoses, while the cells with persisting DNA damage remained at this checkpoint or underwent mitotic slippage and gradually senesced. Reduction of TP53 using sh- or si-RNA prevented the upregulation of OCT4A and P21CIP1 and increased DNA damage. Subsequently, mitoses, micronucleation and senescence were all enhanced after TP53 reduction with senescence confirmed by upregulation of CDKN2A/P16INK4A and increased sa-β-galactosidase positivity. Those mitoses enhanced by TP53 silencing were shown to be multicentrosomal and multi-polar, containing fragmented and highly deranged chromosomes, indicating a loss of genome integrity. Together, these data suggest that TP53-dependent coupling of self-renewal and senescence pathways through the DNA damage checkpoint provides a mechanism for how embryonal stem cell-like EC cells safeguard DNA integrity, genome stability and ultimately the fidelity of self-renewal

    Nanodiamond Decorated PEO Oxide Coatings on NiTi Alloy

    No full text
    Cardiovascular diseases (CVDs) remain a leading cause of death in the European population, primarily attributed to atherosclerosis and subsequent complications. Although statin drugs effectively prevent atherosclerosis, they fail to reduce plaque size and vascular stenosis. Bare metal stents (BMS) have shown promise in acute coronary disease treatment but are associated with restenosis in the stent. Drug-eluting stents (DES) have improved restenosis rates but present long-term complications. To overcome these limitations, nanomaterial-based modifications of the stent surfaces have been explored. This study focuses on the incorporation of detonation nanodiamonds (NDs) into a plasma electrolytic oxidation (PEO) coating on nitinol stents to enhance their performance. The functionalized ND showed a high surface-to-volume ratio and was incorporated into the oxide layer to mimic high-density lipoproteins (HDL) for reverse cholesterol transport (RCT). We provide substantial characterization of DND, including stability in two media (acetone and water), Fourier transmission infrared spectroscopy, and nanoparticle tracking analysis. The characterization of the modified ND revealed successful functionalization and adequate suspension stability. Scanning electron microscopy with EDX demonstrated successful incorporation of DND into the ceramic layer, but the formation of a porous surface is possible only in the high-voltage PEO. The biological assessment demonstrated the biocompatibility of the decorated nitinol surface with enhanced cell adhesion and proliferation. This study presents a novel approach to improving the performance of nitinol stents using ND-based surface modifications, providing a promising avenue for cardiovascular disease
    corecore