35 research outputs found

    Folded Monomer of HIV-1 Protease

    Get PDF

    Solution Structure of a TBP–TAFII230 Complex Protein Mimicry of the Minor Groove Surface of the TATA Box Unwound by TBP

    Get PDF
    AbstractGeneral transcription factor TFIID consists of TATA box–binding protein (TBP) and TBP-associated factors (TAFIIs), which together play a central role in both positive and negative regulation of transcription. The N-terminal region of the 230 kDa Drosophila TAFII (dTAFII230) binds directly to TBP and inhibits TBP binding to the TATA box. We report here the solution structure of the complex formed by dTAFII230 N-terminal region (residues 11–77) and TBP. dTAFII23011–77 comprises three α helices and a β hairpin, forming a core that occupies the concave DNA-binding surface of TBP. The TBP-binding surface of dTAFII230 markedly resembles the minor groove surface of the partially unwound TATA box in the TBP–TATA complex. This protein mimicry of the TATA element surface provides the structural basis of the mechanism by which dTAFII230 negatively controls the TATA box–binding activity within the TFIID complex

    Human general transcription factor TFIIB: conformational variability and interaction with VP16 activation domain

    Get PDF
    ABSTRACT: Human TFIIB, an essential factor in transcription of protein-coding genes by RNA polymerase II, consists of an amino-terminal zinc binding domain (TFIIBn) connected by a linker of about 60 residues to a carboxy-terminal core domain (TFIIBc). The TFIIB core domain has two internally repeated motifs, each comprising five R-helices arranged as in the cyclin box. Compared to the crystal structure of TFIIBc in complex with TBP and a TATA-containing oligonucleotide, the NMR-derived solution structure of free TFIIBc is more compact, with a different repeat-repeat orientation and a significantly shorter first helix in the second repeat. Analysis of backbone 15 N relaxation parameters indicates the presence of relatively large amplitude, nanosecond time-scale motions in the TFIIBc interrepeat linker and structural fluctuations throughout the backbone. Interaction of TFIIBc with the acidic activation domain of VP16 or with TFIIBn induces 1 H-15 N chemical shift and line width changes concentrated in the first repeat, interrepeat linker and the first helix of the second repeat. These results suggest that TFIIB is somewhat pliable and that the conformation of the C-terminal core domain can be modulated by interaction with the N-terminal zinc binding domain. Furthermore, binding of the VP16 activation domain may promote TFIIBc conformations primed for binding to a TBP-DNA complex. TFIIB is an essential factor for initiation of transcription of protein-coding genes by RNA polymerase II (RNAPII), 1 one of the three eukaryotic nuclear RNA polymerases. Each of these polymerases requires a distinct set of auxiliary protein factors for specific initiation of RNA synthesis. In addition to TFIIB, the general initiation factors for RNAPII are TFIIA, TFIID [TATA binding protein (TBP) is a subunit of TFIID], TFIIE, TFIIF, and TFIIH (1-4). In the stepwise model for assembly of a transcription preinitiation complex (PIC) (1-3), TFIIB binds to the TBP (TFIID)-DNA complex and acts as a molecular bridge to RNAPII and the remaining initiation factors (5). TFIIB possesses sequencespecific DNA binding capacity for a DNA segment termed the IIB recognition element (BRE) immediately upstream of the TATA sequence of the adenovirus major late promoter Human TFIIB is a 316-residue polypeptid

    NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations

    No full text
    Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations

    Quantitative comparison of errors in 15N transverse relaxation rates measured using various CPMG phasing schemes

    No full text
    Nitrogen-15 Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiment are widely used to characterize protein backbone dynamics and chemical exchange parameters. Although an accurate value of the transverse relaxation rate, R(2), is needed for accurate characterization of dynamics, the uncertainty in the R(2) value depends on the experimental settings and the details of the data analysis itself. Here, we present an analysis of the impact of CPMG pulse phase alternation on the accuracy of the (15)N CPMG R(2). Our simulations show that R(2) can be obtained accurately for a relatively wide spectral width, either using the conventional phase cycle or using phase alternation when the r.f. pulse power is accurately calibrated. However, when the r.f. pulse is miscalibrated, the conventional CPMG experiment exhibits more significant uncertainties in R(2) caused by the off-resonance effect than does the phase alternation experiment. Our experiments show that this effect becomes manifest under the circumstance that the systematic error exceeds that arising from experimental noise. Furthermore, our results provide the means to estimate practical parameter settings that yield accurate values of (15)N transverse relaxation rates in the both CPMG experiments

    Transverse 13

    No full text

    Inhibitors of HIV-1 Reverse Transcriptase—Associated Ribonuclease H Activity

    No full text
    HIV-1 enzyme reverse transcriptase (RT) is a major target for antiviral drug development, with over half of current FDA-approved therapeutics against HIV infection targeting the DNA polymerase activity of this enzyme. HIV-1 RT is a multifunctional enzyme that has RNA and DNA dependent polymerase activity, along with ribonuclease H (RNase H) activity. The latter is responsible for degradation of the viral genomic RNA template during first strand DNA synthesis to allow completion of reverse transcription and the viral dsDNA. While the RNase H activity of RT has been shown to be essential for virus infectivity, all currently used drugs directed at RT inhibit the polymerase activity of the enzyme; none target RNase H. In the last decade, the increasing prevalence of HIV variants resistant to clinically used antiretrovirals has stimulated the search for inhibitors directed at stages of HIV replication different than those targeted by current drugs. HIV RNase H is one such novel target and, over the past few years, significant progress has been made in identifying and characterizing new RNase H inhibitor pharmacophores. In this review we focus mainly on the most potent low micromolar potency compounds, as these provide logical bases for further development. We also discuss why HIV RNase H has been a difficult target for antiretroviral drug development
    corecore