116 research outputs found

    Adapting the Java Modeling Language for Java 5 Annotations

    Get PDF
    The Java Modeling Language (JML) is a formal specification language for Java that allows to express intended behavior through assertions. Currently, users must embed these assertions in Java comments, which complicates parsing and hinders tool support, leading to poor usability. This paper describes a set of proposed Java 5 annotations which reflect current JML assertions and provides for better tool support. We consider three alternative designs for such annotations and explain why the chosen design is preferred. This syntax is designed to support both a design-by-contract subset of JML, and to be extensible to the full language. We demonstrate that by building two tools: Modern Jass, which provides almost-native support for design by contract, and a prototype that works with a much larger set of JML

    Treatment of meningioma and glioma with protons and carbon ions

    Get PDF
    The rapid rise of particle therapy across the world necessitates evidence to justify its ever-increasing utilization. This narrative review summarizes the current status of these technologies on treatment of both meningiomas and gliomas, the most common benign and malignant primary brain tumors, respectively. Proton beam therapy (PBT) for meningiomas displays high rates of long-term local control, low rates of symptomatic deterioration, along with the potential for safe dose-escalation in select (but not necessarily routine) cases. PBT is also associated with low adverse events and maintenance of functional outcomes, which have implications for quality of life and cost-effectiveness measures going forward. Data on carbon ion radiation therapy (CIRT) are limited; existing series describe virtually no high-grade toxicities and high local control. Regarding the few available data on low-grade gliomas, PBT provides opportunities to dose-escalate while affording no increase of severe toxicities, along with maintaining appropriate quality of life. Although dose-escalation for low-grade disease has been less frequently performed than for glioblastoma, PBT and CIRT continue to be utilized for the latter, and also have potential for safer re-irradiation of high-grade gliomas. For both neoplasms, the impact of superior dosimetric profiles with endpoints such as neurocognitive decline and neurologic funcionality, are also discussed to the extent of requiring more data to support the utility of particle therapy. Caveats to these data are also described, such as the largely retrospective nature of the available studies, patient selection, and heterogeneity in patient population as well as treatment (including mixed photon/particle treatment). Nevertheless, multiple prospective trials (which may partially attenuate those concerns) are also discussed. In light of the low quantity and quality of available data, major questions remain regarding economic concerns as well

    Long term results after fractionated stereotactic radiotherapy (FSRT) in patients with craniopharyngioma: maximal tumor control with minimal side effects

    Get PDF
    Purpose: There are already numerous reports about high local control rates in patients with craniopharyngioma but there are only few studies with follow up times of more than 10 years. This study is an analysis of long term control, tumor response and side effects after fractionated stereotactic radiotherapy (FSRT) for patients with craniopharyngioma. Patients and methods: 55 patients who were treated with FSRT for craniopharyngioma were analyzed. Median age was 37 years (range 6–70 years), among them eight children < 18 years. Radiotherapy (RT) was indicated for progressive disease after neurosurgical resection or postoperatively after repeated resection or partial resection. A median dose of 52.2 Gy (50 – 57.6 Gy) was applied with typical dose per fraction of 1.8 Gy five times per week. The regular follow up examinations comprised in addition to contrast enhanced MRI scans thorough physical examinations and clinical evaluation. Results: During median follow up of 128 months (2 – 276 months) local control rate was 95.3% after 5 years, 92.1% after 10 years and 88.1% after 20 years. Overall survival after 10 years was 83.3% and after 20 years 67.8% whereby none of the deaths were directly attributed to craniopharyngioma. Overall treatment was tolerated well with almost no severe acute or chronic side effects. One patient developed complete anosmia, another one’s initially impaired vision deteriorated further. In 83.6% of the cases with radiological follow up a regression of irradiated tumor residues was monitored, in 7 cases complete response was achieved. 44 patients presented themselves initially with endocrinologic dysfunction none of them showed signs of further deterioration during follow up. No secondary malignancies were observed. Conclusion: Long term results for patients with craniopharyngioma after stereotactic radiotherapy are with respect to low treatment related side effects as well as to local control and overall survival excellent

    Technical Evaluation of the Carolo-Cup 2014 - A Competition for Self-Driving Miniature Cars

    Get PDF
    The Carolo-Cup competition conducted for the eighth time this year, is an international student competition focusing on autonomous driving scenarios implemented on 1:10 scale car models. Three practical sub-competitions have to be realized in this context and represent a complex, interdisciplinary challenge. Hence, students have to cope with all core topics like mechanical development, electronic design, and programming as addressed usually by robotic applications. In this paper we introduce the competition challenges in detail and evaluate the results of all 13 participating teams from the 2014 competition. For this purpose, we analyze technical as well as non-technical configurations of each student group and derive best practices, lessons learned, and criteria as a precondition for a successful participation. Due to the comprehensive orientation of the Carolo-Cup, this knowledge can be applied on comparable projects and related competitions as well

    Proton and carbon ion radiotherapy for primary brain tumors delivered with active raster scanning at the Heidelberg Ion Therapy Center (HIT): early treatment results and study concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Particle irradiation was established at the University of Heidelberg 2 years ago. To date, more than 400 patients have been treated including patients with primary brain tumors. In malignant glioma (WHO IV) patients, two clinical trials have been set up-one investigating the benefit of a carbon ion (18 GyE) vs. a proton boost (10 GyE) in addition to photon radiotherapy (50 Gy), the other one investigating reirradiation with escalating total dose schedules starting at 30 GyE. In atypical meningioma patients (WHO °II), a carbon ion boost of 18 GyE is applied to macroscopic tumor residues following previous photon irradiation with 50 Gy.</p> <p>This study was set up in order to investigate toxicity and response after proton and carbon ion therapy for gliomas and meningiomas.</p> <p>Methods</p> <p>33 patients with gliomas (n = 26) and meningiomas (n = 7) were treated with carbon ion (n = 26) and proton (n = 7) radiotherapy. In 22 patients, particle irradiation was combined with photon therapy. Temozolomide-based chemotherapy was combined with particle therapy in 17 patients with gliomas. Particle therapy as reirradiation was conducted in 7 patients. Target volume definition was based upon CT, MRI and PET imaging. Response was assessed by MRI examinations, and progression was diagnosed according to the Macdonald criteria. Toxicity was classified according to CTCAE v4.0.</p> <p>Results</p> <p>Treatment was completed and tolerated well in all patients. Toxicity was moderate and included fatigue (24.2%), intermittent cranial nerve symptoms (6%) and single episodes of seizures (6%). At first and second follow-up examinations, mean maximum tumor diameters had slightly decreased from 29.7 mm to 27.1 mm and 24.9 mm respectively. Nine glioma patients suffered from tumor relapse, among these 5 with infield relapses, causing death in 8 patients. There was no progression in any meningioma patient.</p> <p>Conclusions</p> <p>Particle radiotherapy is safe and feasible in patients with primary brain tumors. It is associated with little toxicity. A positive response of both gliomas and meningiomas, which is suggested in these preliminary data, must be evaluated in further clinical trials.</p

    Treatment of patients with atypical meningiomas Simpson grade 4 and 5 with a carbon ion boost in combination with postoperative photon radiotherapy: The MARCIE Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment standard for patients with atypical or anaplastic meningioma is neurosurgical resection. With this approach, local control ranges between 50% and 70%, depending on resection status. A series or smaller studies has shown that postoperative radiotherapy in this patient population can increase progression-free survival, which translates into increased overall survival. However, meningiomas are known to be radioresistant tumors, and radiation doses of 60 Gy or higher have been shown to be necessary for tumor control.</p> <p>Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the cell line as well as the endpoint analyzed.</p> <p>First data obtained within the Phase I/II trial performed at GSI in Darmstadt on carbon ion radiotherapy for patients with high-risk meningiomas has shown safety, and treatment results are promising.</p> <p>Methods/design</p> <p>The Phase II-MARCIE-Study will evaluate a carbon ion boost applied to the macroscopic tumor in conjunction with photon radiotherapy in patients with atypical menigiomas after incomplete resection or biopsy.</p> <p>Primary endpoint is progression-free survival, secondary endpoints are overall survival, safety and toxicity.</p> <p>Discussion</p> <p>Based on published data on the treatment of atypical meningiomas with carbon ions at GSI, the present study will evaluate this treatment concept in a larger patient population and will compare outcome to current standard photon treatment.</p> <p>Trial registration</p> <p>NCT01166321</p

    Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT), a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas.</p> <p>Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE), which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons.</p> <p>First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective.</p> <p>Methods Design</p> <p>In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD) of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy.</p> <p>Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival.</p> <p>Discussion</p> <p>The Cinderella trial is the first study to evaluate carbon ion radiotherapy for recurrent gliomas, and to compare this treatment to photon FSRT in a randomized setting using an ion beam delivered by intensity modulated rasterscanning.</p> <p>Trial Registration</p> <p>NCT01166308</p

    Risperidone plasma concentrations are associated with side effects and effectiveness in children and adolescents with autism spectrum disorder

    Get PDF
    Aim: Risperidone is the most commonly prescribed antipsychotic drug to children and adolescents worldwide, but it is associated with serious side effects, including weight gain. This study assessed the relationship of risperidone and 9-hydroxyrisperidone trough concentrations, maximum concentrations and 24-hour area under the curves (AUCs) with body mass index (BMI) z-scores in children and adolescents with autism spectrum disorder (ASD) and behavioural problems. Secondary outcomes were metabolic, endocrine, extrapyramidal and cardiac side effects and effectiveness. Methods: Forty-two children and adolescents (32 males) aged 6-18 years were included in a 24-week prospective observational trial. Drug plasma concentrations, side effects and effectiveness were measured at several time points during follow-up. Relevant pharmacokinetic covariates, including medication adherence and CYP2D6, CYP3A4, CYP3A5 and P-glycoprotein (ABCB1) genotypes, were measured. Nonlinear mixed-effects modelling (NONMEM®) was used for a population pharmacokinetic analysis with 205 risperidone and 205 9-hydroxyrisperidone concentrations. Subsequently, model-based trough concentrations, maximum concentrations and 24-hour AUCs were analysed to predict outcomes using generalized and linear mixed-effects models. Results: A risperidone two-compartment model combined with a 9-hydroxyrisperidone one-compartment model best described the measured concentrations. Of all the pharmacokinetic parameters, higher risperidone sum trough concentrations best predicted higher BMI z-scores during follow-up (P <.001). Higher sum trough concentrations also predicted more sedation (P <.05), higher prolactin levels (P <.001) and more effectiveness measured with Aberrant Behavior Checklist irritability score (P <.01). Conclusion: Our results indicate a therapeutic window exists, which suggests that therapeutic drug monitoring of risperidone might increase safety and effectiveness in children and adolescents with ASD and behavioural problems
    • …
    corecore