8 research outputs found

    Scattering of single spikes

    Full text link
    We apply the dressing method to a string solution given by a static string wrapped around the equator of a three-sphere and find that the result is the single spike solution recently discussed in the literature. Further application of the method allows the construction of solutions with multiple spikes. In particular we construct the solution describing the scattering of two single spikes and compute the scattering phase shift. As a function of the dressing parameters, the result is exactly the same as the one for the giant magnon, up to non-logarithmic terms. This suggests that the single spikes should be described by an integrable spin chain closely related to the one associated to the giant magnons. The field theory interpretation of such spin chain however is still unclear.Comment: 17 pages, LaTeX, 2 figures. v2: References added, typos correcte

    Single spike solutions for strings on S2 and S3

    Get PDF
    We study solutions for rigidly rotating strings on a two sphere. Among them we find two limiting cases that have a particular interest, one is the already known giant magnon and the other we call the single spike solution. The limiting behavior of this last solution is a string infinitely wrapped around the equator. It differs from that solution by the existence of a single spike of height theta that points toward the north pole. We study its properties and compute its energy E and angular momentum J as a function of theta. We further generalize the solution by adding one angular momentum to obtain a solution on S3. We find a spin chain interpretations of these results in terms of free fermions and the Hubbard model but the exact relation with the same models derived from the field theory is not clear.Comment: LaTeX, 20 pages, 3 figures. v2: Refs adde

    Notes on Euclidean Wilson loops and Riemann Theta functions

    Full text link
    The AdS/CFT correspondence relates Wilson loops in N=4 SYM theory to minimal area surfaces in AdS5 space. In this paper we consider the case of Euclidean flat Wilson loops which are related to minimal area surfaces in Euclidean AdS3 space. Using known mathematical results for such minimal area surfaces we describe an infinite parameter family of analytic solutions for closed Wilson loops. The solutions are given in terms of Riemann theta functions and the validity of the equations of motion is proven based on the trisecant identity. The world-sheet has the topology of a disk and the renormalized area is written as a finite, one-dimensional contour integral over the world-sheet boundary. An example is discussed in detail with plots of the corresponding surfaces. Further, for each Wilson loops we explicitly construct a one parameter family of deformations that preserve the area. The parameter is the so called spectral parameter. Finally, for genus three we find a map between these Wilson loops and closed curves inside the Riemann surface.Comment: 35 pages, 7 figures, pdflatex. V2: References added. Typos corrected. Some points clarifie

    Classical probes of string/gauge theory duality

    No full text
    The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in [special characters omitted] = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for [special characters omitted] = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 × S 1 ⊂ AdS5 × S5 with energy E and spin S in AdS3 and angular momentum J and winding m in S1 is explained. The relation between different limits of the spiky string solution with the Landau-Lifshitz model is of particular interest. The presented solutions provide new classes of string motion that are used to better understand the AdS/CFT correspondence, including the single spike solution and previously unknown examples of supersymmetric Wilson loops
    corecore