33 research outputs found
Towards a Re-definition of the Second Based on Optical Atomic Clocks
The rapid increase in accuracy and stability of optical atomic clocks
compared to the caesium atomic clock as primary standard of time and frequency
asks for a future re-definition of the second in the International System of
Units (SI). The status of the optical clocks based on either single ions in
radio-frequency traps or on neutral atoms stored in an optical lattice is
described with special emphasis of the current work at the
Physikalisch-Technische Bundesanstalt (PTB). Besides the development and
operation of different optical clocks with estimated fractional uncertainties
in the 10^-18 range, the supporting work on ultra-stable lasers as core
elements and the means to compare remote optical clocks via transportable
standards, optical fibers, or transportable clocks is reported. Finally, the
conditions, methods and next steps are discussed that are the prerequisites for
a future re-definition of the second
Nach Glüh- und Energiesparlampe: Neues Licht für eine bessere Lebensqualität
Der Siegeszug des künstlichen Lichtes, der ursprünglich mit Öl und Gas befeuert wurde, hat mit dem
elektrischen Licht im letzten Jahrhundert einen Durchbruch erreicht, der weltweit die Lebens- und
Arbeitsweise der Menschen einschneidend verändert hat. Seither sind Zeiten der Aktivität des
Menschen und Arbeitszeit nicht mehr an das Vorhandensein von Tageslicht gekoppelt. Nachdem in
letzter Zeit die energieeffizientere Erzeugung von künstlichem Licht im Vordergrund stand, kommt
heute - im Jahr des Lichts und der lichtbasierten Technologien 2015 – der Qualität des Lichtes eine
stetig wachsende Bedeutung zu. Dieser Beitrag beleuchtet die Eigenschaften der neuartigen
Lichtquellen und die dafür erforderlichen Methoden und Maßnahmen zu ihrer Charakterisierung und
zu ihrem optimalen Einsatz. Er zeigt darüber hinaus, wie mit den neuen Lichtquellen in
unterschiedlichsten Lebensbereichen die Sicherheit, Umweltfreundlichkeit und Lebensqualität
wesentlich erhöht werden kann
Bose-Einstein condensation of alkaline earth atoms: {Ca}
We have achieved Bose-Einstein condensation of Ca, the first for an
alkaline earth element. The influence of elastic and inelastic collisions
associated with the large ground state s-wave scattering length of Ca
was measured. From these findings, an optimized loading and cooling scheme was
developed that allowed us to condense about atoms after laser
cooling in a two-stage magneto-optical trap and subsequent forced evaporation
in a crossed dipole trap within less than 3 s. The condensation of an alkaline
earth element opens novel opportunities for precision measurements on the
narrow intercombination lines as well as investigations of molecular states at
the S--P asymptotes
Wavelength dependent ac-Stark shift of the 1S0 - 3P1 transition at 657 nm in Ca
We have measured the ac-Stark shift of the 4s2 1S0 - 4s4p 3P1 line in 40Ca
for perturbing laser wavelengths between 780 nm and 1064 nm with a time domain
Ramsey-Borde atom interferometer. We found a zero crossing of the shift for the
mS = 0 - mP = 0 transition and \sigma polarized perturbation at 800.8(22) nm.
The data was analyzed by a model deriving the energy shift from known
transition wavelengths and strengths. To fit our data, we adjusted the Einstein
A coefficients of the 4s3d 3D - 4s4p 3P and 4s5s 3S - 4s4p 3P fine structure
multiplets. With these we can predict vanishing ac-Stark shifts for the 1S0 m =
0 - 3P1 m = 1 transition and \sigma- light at 983(12) nm and at 735.5(20) nm
for the transition to the 3P0 level.Comment: 8 pages, 5 figures, 2 table
Crystalline optical cavity at 4 K with thermal noise limited instability and ultralow drift
Crystalline optical cavities are the foundation of today's state-of-the-art
ultrastable lasers. Building on our previous silicon cavity effort, we now
achieve the fundamental thermal noise-limited stability for a 6 cm long silicon
cavity cooled to 4 Kelvin, reaching from 0.8 to 80 seconds.
We also report for the first time a clear linear dependence of the cavity
frequency drift on the incident optical power. The lowest fractional frequency
drift of /s is attained at a transmitted power of 40 nW, with
an extrapolated drift approaching zero in the absence of optical power. These
demonstrations provide a promising direction to reach a new performance domain
for stable lasers, with stability better than and fractional
linear drift below /s
Crystalline optical cavity at 4 K with thermal-noise-limited instability and ultralow drift
Crystalline optical cavities are the foundation of today’s state-of-the-art ultrastable lasers. Building on our previous silicon cavity effort, we now achieve the fundamental thermal-noise-limited stability for a 6 cm long silicon cavity cooled to 4 K, reaching 6.5×10−17 from 0.8 s to 80 s. We also report for the first time, to the best of our knowledge, a clear linear dependence of the cavity frequency drift on incident optical power. The lowest fractional frequency drift of −3×10−19/s is attained at a transmitted power of 40 nW, with an extrapolated drift approaching zero in the absence of optical power. These demonstrations provide a promising direction to reach a new performance domain for stable lasers, with stability better than 1×10−17 and fractional linear drift below 1×10−19/s