7,843 research outputs found

    Dislocations in the ground state of the solid-on-solid model on a disordered substrate

    Full text link
    We investigate the effects of topological defects (dislocations) to the ground state of the solid-on-solid (SOS) model on a simple cubic disordered substrate utilizing the min-cost-flow algorithm from combinatorial optimization. The dislocations are found to destabilize and destroy the elastic phase, particularly when the defects are placed only in partially optimized positions. For multi defect pairs their density decreases exponentially with the vortex core energy. Their mean distance has a maximum depending on the vortex core energy and system size, which gives a fractal dimension of 1.27±0.021.27 \pm 0.02. The maximal mean distances correspond to special vortex core energies for which the scaling behavior of the density of dislocations change from a pure exponential decay to a stretched one. Furthermore, an extra introduced vortex pair is screened due to the disorder-induced defects and its energy is linear in the vortex core energy.Comment: 6 pages RevTeX, eps figures include

    Continuous loading of an electrostatic trap for polar molecules

    Full text link
    A continuously operated electrostatic trap for polar molecules is demonstrated. The trap has a volume of ~0.6 cm^3 and holds molecules with a positive Stark shift. With deuterated ammonia from a quadrupole velocity filter, a trap density of ~10^8/cm^3 is achieved with an average lifetime of 130 ms and a motional temperature of ~300 mK. The trap offers good starting conditions for high-precision measurements, and can be used as a first stage in cooling schemes for molecules and as a "reaction vessel" in cold chemistry.Comment: 4 pages, 3 figures v2: several small improvements, new intr

    Crossovers in the Two Dimensional Ising Spin Glass with ferromagnetic next-nearest-neighbor interactions

    Full text link
    By means of extensive computer simulations we analyze in detail the two dimensional ±J\pm J Ising spin glass with ferromagnetic next-nearest-neighbor interactions. We found a crossover from ferromagnetic to ``spin glass'' like order both from numerical simulations and analytical arguments. We also present evidences of a second crossover from the ``spin glass'' behavior to a paramagnetic phase for the largest volume studied.Comment: 19 pages with 9 postscript figures also available at http://chimera.roma1.infn.it/index_papers_complex.html. Some changes in captions of figures 1 and

    Ground-States of Two Directed Polymers

    Full text link
    Joint ground states of two directed polymers in a random medium are investigated. Using exact min-cost flow optimization the true two-line ground-state is compared with the single line ground state plus its first excited state. It is found that these two-line configurations are (for almost all disorder configurations) distinct implying that the true two-line ground-state is non-separable, even with 'worst-possible' initial conditions. The effective interaction energy between the two lines scales with the system size with the scaling exponents 0.39 and 0.21 in 2D and 3D, respectively.Comment: 19 pages RevTeX, figures include

    Book Review: The Goldmark Case: An American Libel Trial. by William L. Dwyer.

    Get PDF
    Book review: The Goldmark Case: An American Libel Trial. By William L. Dwyer. Seattle: University of Washington Press. 1984. Pp. xi, 291. Reviewed by: Carol T. Rieger

    Book Review: The Goldmark Case: An American Libel Trial. by William L. Dwyer.

    Get PDF
    Book review: The Goldmark Case: An American Libel Trial. By William L. Dwyer. Seattle: University of Washington Press. 1984. Pp. xi, 291. Reviewed by: Carol T. Rieger

    Finite temperature behavior of strongly disordered quantum magnets coupled to a dissipative bath

    Full text link
    We study the effect of dissipation on the infinite randomness fixed point and the Griffiths-McCoy singularities of random transverse Ising systems in chains, ladders and in two-dimensions. A strong disorder renormalization group scheme is presented that allows the computation of the finite temperature behavior of the magnetic susceptibility and the spin specific heat. In the case of Ohmic dissipation the susceptibility displays a crossover from Griffiths-McCoy behavior (with a continuously varying dynamical exponent) to classical Curie behavior at some temperature TT^*. The specific heat displays Griffiths-McCoy singularities over the whole temperature range. For super-Ohmic dissipation we find an infinite randomness fixed point within the same universality class as the transverse Ising system without dissipation. In this case the phase diagram and the parameter dependence of the dynamical exponent in the Griffiths-McCoy phase can be determined analytically.Comment: 23 pages, 12 figure
    corecore