46 research outputs found

    Ultrahard carbon film from epitaxial two-layer graphene

    Full text link
    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. To date, there hasn't been any practical demonstration of the transformation of multi-layer graphene into diamond-like ultra-hard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, resisting to perforation with a diamond indenter, and showing a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2-to-sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than 3 to 5 layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Listeria pathogenesis and molecular virulence determinants

    Get PDF
    The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research

    Use of Dorset Egg Medium for Maintenance and Transport of Neisseria meningitidis

    No full text

    Single asperity friction in the wear regime

    No full text
    Abstract We used molecular dynamics simulation to investigate the friction of a single asperity against a rigid substrate, while generating debris. In the low wear regime (i.e., non-linear wear rate dependence on the contact stress, via atom-by-atom attrition), the frictional stress is linearly dependent on the normal stress, without any lubrication effect from the wear debris particles. Both the slope (friction coefficient) and friction at zero normal stress depend strongly on asperity-substrate adhesion. In the high wear regime (i.e., linear wear rate dependence on the contact stress, via plastic flow), the friction-normal stress curves deviate from a linear relation merging toward plastic flow of the single asperity which is independent of the interfacial adhesion. One can further link wear and friction by considering debris generation as chemical reaction, driven by both normal and frictional forces. The coupling between wear and friction can then be quantified by a thermodynamic efficiency of the debris generation. While the efficiency is less than 5% in the low wear regime, indicating poor mechanochemical coupling, it increases with normal stress toward 50% in the high wear regime

    Monoclonal Antibodies Specific for Neisseria meningitidis Group B Polysaccharide and Their Peptide Mimotopes

    Get PDF
    From five mice immunized with Escherichia coli K1 bacteria, we produced 12 immunoglobulin M hybridomas secreting monoclonal antibodies (MAbs) that bind to Neisseria meningitidis group B (NMGB). The 12 MAbs also bound the capsular polysaccharide (PS) of E. coli K1 [which, like NMGB, is α(2-8)-linked polysialic acid (PSA)] and bound to EV36, a nonpathogenic E. coli K-12 strain producing α(2-8) PSA. Except for HmenB5, which cross-reacted with N. meningitidis group C, none of the MAbs bound to N. meningitidis groups A, C, and Y. Of the 12 MAbs, 6 were autoantibodies as defined by binding to CHP-134, a neuroblastoma cell line expressing short-chain α(2-8) PSA; five of these MAbs killed NMGB in the presence of rabbit complement, and two also killed NMGB with human complement. The other six MAbs, however, were nonautoreactive; all killed NMGB with rabbit complement, and five killed NMGB with human complement. To obtain peptide mimotopes of NMGB PS, four of the nonautoreactive MAbs (HmenB2, HmenB3, HmenB13, and HmenB14) were used to screen two types of phage libraries, one with a linear peptide of 7 amino acids and the other with a circular peptide of 7 amino acids inserted between two linked cysteines. We obtained 86 phage clones that bound to the screening MAb in the absence but not in the presence of E. coli K1 PSA in solution. The clones contained 31 linear and 4 circular mimotopes expressing unique sequences. These mimotopes nonrandomly expressed amino acids and were different from previously described mimotopes for NMGB PS. The new mimotopes may be useful in producing a vaccine(s) capable of eliciting anti-NMGB antibodies not reactive with neuronal tissue
    corecore