187 research outputs found

    Thermochemical scanning probe lithography of protein gradients at the nanoscale

    Get PDF
    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro

    The interplay between apparent viscosity and wettability in nanoconfined water

    Get PDF
    Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here we show that the viscous shear forces in nanoconfined water can be orders of magnitudes larger than in bulk water if the confining surfaces are hydrophilic, whereas they greatly decrease when the surfaces are increasingly hydrophobic. This decrease of viscous forces is quantitatively explained with a simple model that includes the slip velocity at the water surface interface. The same effect is observed in the energy dissipated by a tip vibrating in water perpendicularly to a surface. Comparison of the experimental data with the model shows that interfacial viscous forces and compressive dissipation in nanoconfined water can decrease up to two orders of magnitude due to slippage. These results offer a new understanding of interfacial fluids, which can be used to control flow at the nanoscale

    Kinetics of capillary condensation in nanoscopic sliding friction

    Get PDF
    The velocity and humidity dependence of nanoscopic sliding friction has been studied on CrN and diamondlike carbon surfaces with an atomic force microscope. The surface wettability is found to be decisive. Partially hydrophilic surfaces show a logarithmic decrease of friction with increasing velocity, the slope of which varies drastically with humidity, whereas on partially hydrophobic surfaces we confirm the formerly reported logarithmic increase. A model for the thermally activated nucleation of water bridges between tip and sample asperities fully reproduces the experimental data

    The 2/3 power law dependence of capillary force on normal load in nanoscopic friction

    Get PDF
    During the sliding of an atomic force microscope (AFM) tip on a rough hydrophilic surface, water capillary bridges form between the tip and the asperities of the sample surface. These water bridges give rise to capillary and friction forces. We show that the capillary force increases with the normal load following a 2/3 power law. We trace back this behavior to the load induced change of the tip-surface contact area which determines the number of asperities where the bridges can form. An analytical relationship is derived which fully explains the observed interplay between humidity, velocity, and normal load in nanoscopic friction

    Nanotribology of carbon based thin films: the influence of film structure and surface morphology

    Get PDF
    The tribological behavior of carbon based thin films is strongly influenced by their chemical composition, polycrystalline structure and surface morphology. We present friction measurements on laser deposited amorphous carbon and carbon nitride (CNchi) thin films using atomic force microscopy. We studied the friction behavior of these films in relation with their structure and surface morphology resulting from the applied deposition parameters. We found high nanoscopic friction for amorphous carbon thin films, medium friction for CN chi and very low friction for graphite. Finally we discuss our findings in terms of the microscopic mechanisms of energy dissipation underlying the observed friction behavior. (C) 2001 Elsevier Science B.V. All rights reserved

    Nanofriction mechanisms derived from the dependence of friction on load and sliding velocity from air to UHV on hydrophilic silicon

    Full text link
    This paper examines friction as a function of the sliding velocity and applied normal load from air to UHV in a scanning force microscope (SFM) experiment in which a sharp silicon tip slides against a flat Si(100) sample. Under ambient conditions, both surfaces are covered by a native oxide, which is hydrophilic. During pump-down in the vacuum chamber housing the SFM, the behavior of friction as a function of the applied normal load and the sliding velocity undergoes a change. By analyzing these changes it is possible to identify three distinct friction regimes with corresponding contact properties: (a) friction dominated by the additional normal forces induced by capillarity due to the presence of thick water films, (b) higher drag force from ordering effects present in thin water layers and (c) low friction due to direct solid-solid contact for the sample with the counterbody. Depending on environmental conditions and the applied normal load, all three mechanisms may be present at one time. Their individual contributions can be identified by investigating the dependence of friction on the applied normal load as well as on the sliding velocity in different pressure regimes, thus providing information about nanoscale friction mechanisms

    The 2

    Full text link

    Film structure of epitaxial graphene oxide on SiC: Insight on the relationship between interlayer spacing, water content, and intralayer structure

    Full text link
    Chemical oxidation of multilayer graphene grown on silicon carbide yields films exhibiting reproducible characteristics, lateral uniformity, smoothness over large areas, and manageable chemical complexity, thereby opening opportunities to accelerate both fundamental understanding and technological applications of this form of graphene oxide films. Here, we investigate the vertical inter-layer structure of these ultra-thin oxide films. X-ray diffraction, atomic force microscopy, and IR experiments show that the multilayer films exhibit excellent inter-layer registry, little amount (<10%) of intercalated water, and unexpectedly large interlayer separations of about 9.35 {\AA}. Density functional theory calculations show that the apparent contradiction of "little water but large interlayer spacing in the graphene oxide films" can be explained by considering a multilayer film formed by carbon layers presenting, at the nanoscale, a non-homogenous oxidation, where non-oxidized and highly oxidized nano-domains coexist and where a few water molecules trapped between oxidized regions of the stacked layers are sufficient to account for the observed large inter-layer separations. This work sheds light on both the vertical and intra-layer structure of graphene oxide films grown on silicon carbide, and more in general, it provides novel insight on the relationship between inter-layer spacing, water content, and structure of graphene/graphite oxide materials.Comment: 23 pages, 4 figure

    Radial elasticity of multi-walled carbon nanotubes

    Get PDF
    We report an experimental and a theoretical study of the radial elasticity of multi-walled carbon nanotubes as a function of external radius. We use atomic force microscopy and apply small indentation amplitudes in order to stay in the linear elasticity regime. The number of layers for a given tube radius is inferred from transmission electron microscopy, revealing constant ratios of external to internal radii. This enables a comparison with molecular dynamics results, which also shed some light onto the applicability of Hertz theory in this context. Using this theory, we find a radial Young modulus strongly decreasing with increasing radius and reaching an asymptotic value of 30 +/- 10 GPa.Comment: 5 pages, 3 figure
    • …
    corecore