9 research outputs found

    Metabolism of 25-Hydroxy-Vitamin D in Human Macrophages Is Highly Dependent on Macrophage Polarization

    No full text
    Macrophages synthesize active vitamin D (1,25-dihydroxy-vitamin D) and express the vitamin D receptor in the nucleus; however, vitamin D metabolism in relation to macrophage polarization and function is not well understood. We studied monocyte-derived macrophages (MDMs) from human buffy coats polarized into M0, M1 (LPS + IFNγ), M2a (IL4 + IL13) and M2c (IL10) macrophage subtypes stimulated with 25-hydroxy-vitamin D (1000 and 10,000 nanomolar). We measured vitamin D metabolites (25-hydroxy-vitamin D, 1,25-dihydroxy-vitamin D, 24,25-dihydroxy-vitamin D and 3-epi-25-hydroxy-vitamin D) in cell media with liquid chromatography-mass spectrometry-mass spectrometry. The mRNA expression (CYP27B1, CYP24A1 and CYP24A1-SV) was measured with qPCR. We found that reparative MDMs (M2a) had significantly more 1,25-dihydroxy-vitamin D compared to the other MDMs (M0, M1 and M2c). All MDMs were able to produce 3-epi-25-hydroxy-vitamin D, but this pathway was almost completely attenuated in inflammatory M1 MDMs. All MDM subtypes degraded vitamin D through the 24-hydroxylase pathway, although M1 MDMs mainly expressed an inactive splice variant of CYP24A1, coding the degrading enzyme. In conclusion, this study shows that vitamin D metabolism is highly dependent on macrophage polarization and that the C3-epimerase pathway for vitamin D is active in macrophages

    Metabolism of 25-Hydroxy-Vitamin D in Human Macrophages Is Highly Dependent on Macrophage Polarization

    No full text
    Macrophages synthesize active vitamin D (1,25-dihydroxy-vitamin D) and express the vitamin D receptor in the nucleus; however, vitamin D metabolism in relation to macrophage polarization and function is not well understood. We studied monocyte-derived macrophages (MDMs) from human buffy coats polarized into M0, M1 (LPS + IFNÎł), M2a (IL4 + IL13) and M2c (IL10) macrophage subtypes stimulated with 25-hydroxy-vitamin D (1000 and 10,000 nanomolar). We measured vitamin D metabolites (25-hydroxy-vitamin D, 1,25-dihydroxy-vitamin D, 24,25-dihydroxy-vitamin D and 3-epi-25-hydroxy-vitamin D) in cell media with liquid chromatography-mass spectrometry-mass spectrometry. The mRNA expression (CYP27B1, CYP24A1 and CYP24A1-SV) was measured with qPCR. We found that reparative MDMs (M2a) had significantly more 1,25-dihydroxy-vitamin D compared to the other MDMs (M0, M1 and M2c). All MDMs were able to produce 3-epi-25-hydroxy-vitamin D, but this pathway was almost completely attenuated in inflammatory M1 MDMs. All MDM subtypes degraded vitamin D through the 24-hydroxylase pathway, although M1 MDMs mainly expressed an inactive splice variant of CYP24A1, coding the degrading enzyme. In conclusion, this study shows that vitamin D metabolism is highly dependent on macrophage polarization and that the C3-epimerase pathway for vitamin D is active in macrophages

    The Dynamic Process of β2-Adrenergic Receptor Activation

    Get PDF
    G-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the β(2)-adrenergic receptor (β(2)AR), a prototypical GPCR. We labeled β(2)AR with (13)CH(3)ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for β(2)AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for β(2)AR's ability to engage multiple signaling and regulatory proteins

    Structural basis of lipopolysaccharide maturation by the WaaL O-antigen ligase

    No full text
    The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases
    corecore