4,079 research outputs found

    Population inversion in optically pumped asymmetric quantum well terahertz lasers

    Get PDF
    Intersubband carrier lifetimes and population ratios are calculated for three- and four-level optically pumped terahertz laser structures. Laser operation is based on intersubband transitions between the conduction band states of asymmetric GaAs-Ga(1 – x)Al(x)As quantum wells. It is shown that the carrier lifetimes in three-level systems fulfill the necessary conditions for stimulated emission only at temperatures below 200 K. The addition of a fourth level, however, enables fast depopulation of the lower laser level by resonant longitudinal optical phonon emission and thus offers potential for room temperature laser operation. © 1997 American Institute of Physics

    Laser cooling of a nanomechanical resonator mode to its quantum ground state

    Full text link
    We show that it is possible to cool a nanomechanical resonator mode to its ground state. The proposed technique is based on resonant laser excitation of a phonon sideband of an embedded quantum dot. The strength of the sideband coupling is determined directly by the difference between the electron-phonon couplings of the initial and final states of the quantum dot optical transition. Possible applications of the technique we describe include generation of non-classical states of mechanical motion.Comment: 5 pages, 3 figures, revtex

    Theory of phonon-drag thermopower of extrinsic semiconducting single-wall carbon nanotubes and comparison with previous experimental data

    Full text link
    A theoretical model for the calculation of the phonon-drag thermopower, SgS^{g}, in degenerately doped semiconducting single-wall carbon nanotubes (SWCNTs) is proposed. Detailed calculations of SgS^{g} are performed as a function of temperature, tube radius and position of the Fermi level. We derive a simple analytical expression for SgS^{g} that can be utilized to determine the free carrier density in doped nanotubes. At low temperatures SgS^{g} shows an activated behavior characteristic of the one-dimensional (1D) character of carriers. Screening effects are taken into account and it is found that they dramatically reduce the magnitude of SgS^{g}. Our results are compared with previous published experimental data in bulk p-doped SWCNT materials. Excellent agreement is obtained in the temperature range 10-200 K for a consistent set of parameters. This is a striking result in view of the complexity of these systems.Comment: 21 pages, 6 figures. This version has been accepted for publication in Phys. Rev.

    Site of action of a halogenated 4-hydroxypyridine on ferredoxin-catalysed cyclic photophosphorylation

    Get PDF
    AbstractTetrabromo-4-hydroxypyridine (J820) inhibited ferredoxin-catalysed cyclic photophosphorylation at micromolar concentrations but did not inhibit or uncouple the AQS-catalysed system. At 2 μM it did not abolish the slow phase of the electrochromic shift or affect the turnover of cytochromes b-563 and f. At higher concentrations (10 μM) it decreased the rate of re-reduction of cytochrome f, whilst inhibiting the reduction of cytochrome b-563. It is concluded that tetrabromo-4-hydroxpyridine does not bind to the quinone reduction site of the cytochrome bf complex, but inhibits the putative ferredoxin-plastoquinone reductase

    Energy bands, conductance and thermoelectric power for ballistic electrons in a nanowire with spin-orbit interaction

    Full text link
    We calculated the effects of spin-orbit interaction (SOI) on the energy bands, ballistic conductance and the electron-diffusion thermoelectric power of a nanowire by varying the temperature, electron density and width of the wire. The potential barriers at the edges of the wire are assumed to be very high. A consequence of the boundary conditions used in this model is determined by the energy band structure, resulting in wider plateaus when the electron density is increased due to larger energy-level separation as the higher subbands are occupied by electrons. The nonlinear dependence of the transverse confinement on position with respect to the well center excludes the "pole-like feature" in the conductance which is obtained when a harmonic potential is employed for confinement. At low temperature, the electron diffusion thermoelectric power increases linearly with T but deviates from the linear behavior for large values of T.Comment: Updated corrected version of the original submissio

    Cyclic oxidation of yttrium/ytterbium disilicate environmental barrier coatings

    Get PDF
    Please click Additional Files below to see the full abstract

    Spin Readout and Initialization in a Semiconductor Quantum Dot

    Full text link
    Electron spin qubits in semiconductors are attractive from the viewpoint of long coherence times. However, single spin measurement is challenging. Several promising schemes incorporate ancillary tunnel couplings that may provide unwanted channels for decoherence. Here, we propose a novel spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot by microwave excitation. The same quantum dot can be used for rapid initialization, gating, and readout. We present detailed modeling of such a device in silicon to confirm its feasibility.Comment: Published versio

    Climate change mitigation strategies for mechanically controlled repositories: The case of The National Archives, Kew

    Get PDF
    A computer based building simulation model was developed to examine the energy load and environmental management in The National Archives Q1 repository building in Kew, UK to optimise environmental management and examine the impacts of climate change. The need to accurately simulate the hygrothermal environment inside the archive building which houses mainly paper-based records led to the choice of EnergyPlus as the modelling software. The study presents the simulation results of five environmental strategies which predict energy saving potential as high as 43% without significantly affecting the quality of the preservation environment. The effect of climate change is predicted to have little impact on the archive environment due to the filtering effect of the air conditioning system. On the other hand, an increase in total energy load by 15% and 24% is predicted under the worst case climate change scenario in 2050 and 2080, respectively, if the current environmental management practice is continued into the future. However, the identified energy saving strategies could represent possible mitigative solutions in reducing future energy load against the impact of climate change

    Sub-linear radiation power dependence of photo-excited resistance oscillations in two-dimensional electron systems

    Full text link
    We find that the amplitude of the RxxR_{xx} radiation-induced magnetoresistance oscillations in GaAs/AlGaAs system grows nonlinearly as APαA \propto P^{\alpha} where AA is the amplitude and the exponent α<1\alpha < 1. %, with α1/2\alpha \rightarrow 1/2 in %the low temperature limit. This striking result can be explained with the radiation-driven electron orbits model, which suggests that the amplitude of resistance oscillations depends linearly on the radiation electric field, and therefore on the square root of the power, PP. We also study how this sub-linear power law varies with lattice temperature and radiation frequency.Comment: 5 pages, 3 figure
    corecore