229 research outputs found

    Impacts of dairy farming on water quality and biological communities of streams in Tararua District, New Zealand : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology at Massey University

    Get PDF
    Water quality in dairy farming areas has increasingly been the focus of attention in New Zealand as more land is converted to dairying and the intensity of operations increases. Regional councils and the dairy industry have encouraged removal of existing treated dairy shed effluent discharges from waterways and the minimisation of diffuse sources of contaminants such as nutrients and bacteria. There has been limited scientific data collected on the impacts of dairy shed effluent discharges on streams, nor on the overall water quality and biotic integrity in small sub-catchments with intensive dairy farming. This study aimed to address these issues, as well as investigating the scale influence (temporal and spatial) on the results. Streams in two sub-catchments of the Manawatu River, Tararua District, New Zealand, were subject to regular monitoring over the summer low-flow period of 2001. Intensive dairy farming is the predominant land use in the catchments. Twenty-two sites were measured on seven occasions for bacteria, nutrients, turbidity, periphyton, temperature, conductivity, dissolved oxygen (DO) and pH. Macroinvertebrate samples were taken at 18 of the sites on one occasion. Twelve of the sites were paired above and below five dairyshed effluent discharges and one urban sewage treatment discharge. The water quality in the small streams did not meet chemical or microbiological guidelines at most sites on most sampling occasions. While point-source discharges influenced some sites, other sites with no obvious contaminant discharges also did not meet guidelines. However, biological monitoring showed periphyton levels were always within guidelines and macroinvertebrate communities indicated only 'moderate' enrichment. The discharges of treated dairyshed effluent into streams and drains had a significant impact on Escherichia coli (E.coli), dissolved reactive phosphorus (DRP), nitrate, ammonia, turbidity and conductivity measures. However, periphyton levels generally decreased below discharges. Macroinvertebrate communities showed some change below discharges to dominance by indicators of poor water quality, but this was not statistically significant. The variation between individual discharges indicates that there is a need to assess the impacts on a case-by-case basis. Temporal trends below a dairy shed effluent discharge showed 24-hour cycles in temperature and DO but not in conductivity. In addition, there was a weak 12-hour cycle in temperature but this was unlikely to be due to pulses of effluent from twice-daily milking Conductivity within the stream was affected by random events (for example pond desludging) influencing effluent discharges, indicating that individual variation in system management can have localised impacts on water quality. However, the proximity of cows at the time of sampling had no detectable effect on water quality measures. Rainfall affected E.coli levels in both streams, however the influence of rain on periphyton levels appeared to be subject to individual stream characteristics. There was considerable spatial variation in water quality throughout the catchments. While some of this variation could be attributed to point-source discharges, much remains unexplained but is likely due to variation in overland runoff from grazed pastures and groundwater inputs. Data from State of the Environment (SoE) monitoring in the Manawatu catchment was also compared with results from this study to determine if the SoE monitoring is accurately reflecting water quality at these smaller scales. Larger waterways of the Manawatu catchment had similar levels of dissolved oxygen as the smaller streams, however there was a wide variation in nutrient levels in the different waterways

    The exercise of jurisdiction and the absent author of Law's speech

    Get PDF
    Although it is not uncommon for a court to consider the question of whether an authority (or which authority) may possess ‘jurisdiction’ (over a matter, a space, persons, etc.) it is less common for a court to enquire as to what jurisdiction means in the first place. This paper considers what we may mean by the idea that ‘jurisdiction’ has been exercised, both for the purposes of providing a tool in identifying and critically engaging with its performance, but also as a lens through which to consider the production of legal authority. In bringing philosophy of language and literary theory to bear on the question, it is proposed that jurisdiction is the performance/speaking of law in which the audience/addressee is pre-supposed as subject to that law in a process that is productive of legal authority

    Evaluation of a VNA-based Material Characterization Kit at Frequencies from 0.75 THz to 1.1 THz

    Get PDF
    This paper describes an initial assessment of a commercially available THz material characterization kit (MCK). The assessment is based on the measurement of several material samples. The MCK comprises two conical waveguide horn transitions and two sections of low-loss corrugated waveguide. A gap between the two corrugated waveguides allows the material samples to be inserted into the system during measurement. The MCK is attached to a THz Vector Network Analyzer (VNA), which measures S-parameters, in the frequency domain, of a material under test (MUT). A computer-based algorithm employing an iterative calculation derives values for material parameters (e.g. permittivity) from the measured S-parameters of the MUT. A MCK has been evaluated over the frequency range 0.75 THz to 1.1 THz, to assess the plausibility of results that can be obtained using such a technique. Two VNAs utilizing frequency extender heads were used for the investigation, with measurements being made with reference to a range of different calibration techniques and different calibration standards. Whilst some of the results obtained look reasonable, a significant proportion of the results were either difficult to interpret or showed inexplicable (i.e. non-physical) behavior. This indicates that much work is still needed before this technique can be used routinely for the measurement of material parameters at these very high frequencies

    3-D printing quantization predistortion applied to sub-THz chained-function filters

    Get PDF
    This paper investigates physical dimension limits associated with the low-cost, polymer-based masked stereolithography apparatus (MSLA) 3-D printer, with 50 μm pixels defining the minimum print feature size. Based on the discretization properties of our MSLA 3-D printer, multi-step quantization predistortion is introduced to correct for registration errors between the CAD drawing and slicing software. This methodology is applied to G-band 5th order metal-pipe rectangular waveguide filters, where the pixel pitch has an equivalent electrical length of 8.5° at center frequency. When compared to the reference Chebyshev filter, our chained-function filter exhibits superior S-parameter measurements, with a low insertion loss of only 0.6 dB at its center frequency of 182 GHz, having a 0.9% frequency shift, and an acceptable worst-case passband return loss of 13 dB. Moreover, with measured dimensions after the 3-D printed parts have been commercially electroplated with a 50 μm thick layer of copper, the re-simulations are in good agreement with the S-parameter measurements. For the first time, systematic (quantization) errors associated with a pixel-based 3-D printer have been characterized and our robust predistortion methodology has been successfully demonstrated with an upper-millimeter-wave circuit. Indeed, we report the first polymer-based 3-D printed filters that operate above W-band. As pixel sizes continue to shrink, more resilient (sub-)THz filters with ever-higher frequencies of operation and more demanding specifications can be 3-D printed. Moreover, our work opens-up new opportunities for any pixel-based technology, which exhibits registration errors, with its application critically dependent on its minimum feature size

    Polymer-based 3-D printed 140 to 220 GHz metal waveguide thru lines, twist and filters

    Get PDF
    This paper demonstrates the current state-of-the-art in low-cost, low loss ruggedized polymer-based 3-D printed G-band (140 to 220 GHz) metal-pipe rectangular waveguide (MPRWG) components. From a unique and exhaustive up-to-date literature review, the main limitations for G-band split-block MPRWGs are identified as electromagnetic (EM) radiation leakage, assembly part alignment and manufacturing accuracy. To mitigate against leakage and misalignment, we investigate a ‘trough-and-lid’ split-block solution. This approach is successfully employed in proof-of-concept thru lines, and in the first polymer-based 3-D printed 90° twist and symmetrical diaphragm inductive iris-coupled bandpass filters (BPFs) operating above 110 GHz. An inexpensive desktop masked stereolithography apparatus 3-D printer and a commercial copper electroplating service are used. Surface roughness losses are calculated and applied to EM (re-)simulations, using two modifications of the Hemispherical model. The 7.4 mm thru line exhibits a measured average dissipative attenuation of only 12.7 dB/m, with rectangular-to-trapezoidal cross-sectional distortion being the main contributor to loss. The 90° twist exhibits commensurate measured performance to its commercial counterpart, despite the much lower manufacturing costs. A detailed time-domain reflectometry analysis of flange quality for the thru lines and 90° twists has also been included. Finally, a new systematic iris corner rounding compensation technique, to correct passband frequency down-shifting is applied to two BPFs. Here, the 175 GHz exemplar exhibits only 0.5% center frequency up-shifting. The trough-and-lid assembly is now a viable solution for new upper-mm-wave MPRWG components. With this technology becoming less expensive and more accurate, higher frequencies and/or more demanding specifications can be implemented

    Financial Benefits Review: Transformation Challenge Award programme, Essex County Council

    Get PDF
    This is an Interim Financial Benefits Review (FBR) for projects that have been funded by the Transformation Challenge Award (TCA) and are being delivered by Essex Partners. The review only covers those projects funded by the TCA that have financial benefits associated with them in the initial proposal of work. The projects in scope included the Domestic Abuse Housing Database, the Domestic Abuse in Health – IDVA project, the Parish Safety Volunteers, the Social Prescription and the Essex Data: Program. This report aimed at producing a clear model of how cashable benefits of £27.5 million over 10 years will be delivered, or a revision of expectations if necessary and to recommend actions to employ with respect to financial benefits delivery in future service provision based on lessons learnt

    Options Paper, Transformation Challenge Award (TCA) Programme Evaluation

    Get PDF
    This paper sets out possible next steps in response to the Interim Financial Benefits Review (FBR) of the Transformation Challenge Award (TCA) funded projects submitted on the 13/09/2017 and presents options for action to address the recommendations of the report

    3-D Printed Plug and Play Prototyping for Low-cost Sub-THz Subsystems

    Get PDF
    Polymer-based additive manufacturing using 3-D printing for upper-millimeter-wave ( ca. 100 to 300 GHz) frequency applications is now emerging. Building on our previous work, with metal-pipe rectangular waveguides and free-space quasi-optical components, this paper brings the two media together at G-band (140 to 220 GHz), by demonstrating a compact multi-channel front-end subsystem. Here, the proof-of-concept demonstrator integrates eight different types of 3-D printed components (30 individual components in total). In addition, the housing for two test platforms and the subsystem are all 3-D printed as single pieces, to support plug and play development; offering effortless component assembly and alignment. We introduce bespoke free-space TRM calibration and measurement schemes with our quasi-optical test platforms. Equal power splitting plays a critical role in our multi-channel application. Here, we introduce a broadband 3-D printed quasi-optical beamsplitter for upper-millimeter-wave applications. Our quantitative and/or qualitative performance evaluations for individual components and the complete integrated subsystem, demonstrate the potential for using consumer-level desktop 3-D printing technologies at such high frequencies. This work opens-up new opportunities for low-cost, rapid prototyping and small-batch production of complete millimeter-wave front-end subsystems

    3-D printed rectangular waveguide 123-129 GHz packaging for commercial CMOS RFICs

    Get PDF
    This work demonstrates the hybrid integration of a complementary metal–oxide–semiconductor (CMOS) radio frequency integrated circuit (RFIC) into a host 3-D printed metal-pipe rectangular waveguide (MPRWG). On-chip Vivaldi antennas are used for TE 10 -to-thin-film microstrip (TFMS) mode conversion. Our packaging solution has a combined measured insertion loss of only 1 dB/transition at 126 GHz. This unique packaging and interconnect solution opens up new opportunities for implementing low-cost subterahertz (THz) multichip modules
    • …
    corecore