119 research outputs found
Properties of the CO and HO MOLsphere of the red supergiant Betelgeuse from VLTI/AMBER observations
Context. Betelgeuse is the closest red supergiant (RSG); therefore, it is
well suited for studying the complex processes in its atmosphere that lead to
the chemical enrichment of the interstellar medium. Aims. We intend to
investigate the shape and composition of the close molecular layer (also known
as the MOLsphere) that surrounds the star. This analysis is part of a wider
program that aims at understanding the dynamics of the circumstellar envelope
of Betelgeuse. Methods. On January and February 2011, Betelgeuse was observed
using the Astronomical Multi-BEam combineR (AMBER) instrument of the Very Large
Telescope Interferometer (VLTI) in the H and K bands. Using the medium spectral
resolution of the instrument (R 1500), we were able to investigate the
carbon monoxide band heads and the water-vapor bands. We used two different
approaches to analyse our data: a model fit in both the continuum and
absorption lines and then a fit with a Radiative HydroDynamics (RHD)
simulation. Results. Using the continuum data, we derive a uniform disk
diameter of ~mas, a power law type limb-darkened disk diameter
of ~mas and a limb-darkening exponent of .
Within the absorption lines, using a single layer model, we obtain parameters
of the MOLsphere. Using a RHD simulation, we unveil the convection pattern in
the visibilities. Conclusions. We derived a new value of the angular diameter
of Betelgeuse in the K band continuum. Our observations in the absorption lines
are well reproduced by a molecular layer at 1.2 stellar radii containing both
CO and HO. The visibilities at higher spatial frequencies are matching a
convection pattern in a RHD simulation.Comment: 13 pages, 11 figures, accepted for publication in Astronomy &
Astrophysics; Language editin
Exoplanets imaging with a Phase-Induced Amplitude Apodization Coronagraph - I. Principle
Using 2 aspheric mirrors, it is possible to apodize a telescope beam without
losing light or angular resolution: the output beam is produced by
``remapping'' the entrance beam to produce the desired light intensity
distribution in a new pupil. We present the Phase-Induced Amplitude Apodization
Coronagraph (PIAAC) concept, which uses this technique, and we show that it
allows efficient direct imaging of extrasolar terrestrial planets with a
small-size telescope in space. The suitability of the PIAAC for exoplanet
imaging is due to a unique combination of achromaticity, small inner working
angle (about 1.5 ), high throughput, high angular resolution and
large field of view. 3D geometrical raytracing is used to investigate the
off-axis aberrations of PIAAC configurations, and show that a field of view of
more than 100 in radius is available thanks to the correcting
optics of the PIAAC. Angular diameter of the star and tip-tilt errors can be
compensated for by slightly increasing the size of the occulting mask in the
focal plane, with minimal impact on the system performance. Earth-size planets
at 10 pc can be detected in less than 30s with a 4m telescope. Wavefront
quality requirements are similar to classical techniques.Comment: 35 pages, 16 figures, Accepted for publication in Ap
An edge-on translucent dust disk around the nearest AGB star L2 Puppis - VLT/NACO spectro-imaging from 1.04 to 4.05 microns and VLTI interferometry
As the nearest known AGB star (d=64pc) and one of the brightest (mK-2), L2
Pup is a particularly interesting benchmark object to monitor the final stages
of stellar evolution. We report new lucky imaging observations of this star
with the VLT/NACO adaptive optics system in twelve narrow band filters covering
the 1.0-4.0 microns wavelength range. These diffraction limited images reveal
an extended circumstellar dust lane in front of the star, that exhibits a high
opacity in the J band and becomes translucent in the H and K bands. In the L
band, extended thermal emission from the dust is detected. We reproduce these
observations using Monte-Carlo radiative transfer modeling of a dust disk with
the RADMC-3D code. We also present new interferometric observations with the
VLTI/VINCI and MIDI instruments. We measure in the K band an upper limit to the
limb-darkened angular diameter of theta_LD = 17.9 +/- 1.6 mas, converting to a
maximum linear radius of R = 123 +/- 14 Rsun. Considering the geometry of the
extended K band emission in the NACO images, this upper limit is probably close
to the actual angular diameter of the star. The position of L2 Pup in the
Herzsprung-Russell diagram indicates that this star has a mass around 2 Msun
and is probably experiencing an early stage of the asymptotic giant branch. We
do not detect any stellar companion of L2 Pup in our adaptive optics and
interferometric observations, and we attribute its apparent astrometric wobble
in the Hipparcos data to variable lighting effects on its circumstellar
material. We however do not exclude the presence of a binary companion, as the
large loop structure extending to more than 10 AU to the North-East of the disk
in our L band images may be the result of interaction between the stellar wind
of L2 Pup and a hidden secondary object. The geometric configuration that we
propose, with a large dust disk seen almost edge-on, appears particularly
favorable to test and develop our understanding of the formation of bipolar
nebulae.Comment: 16 pages, 15 figure
High-Resolution Infrared Spectroscopy of the Brown Dwarf Epsilon Indi Ba
We report on the analysis of high-resolution infrared spectra of the newly
discovered brown dwarf Epsilon Indi Ba. This is the closest known brown dwarf
to the solar system, with a distance of 3.626 pc. Spectra covering the ranges
of 2.308-2.317 microns and 1.553-1.559 microns were observed at a spectral
resolution of R=50,000 with the Phoenix spectrometer on the Gemini South
telescope. The physical paramters of effective temperature and surface gravity
are derived by comparison to model spectra calculated from atmospheres computed
using unified cloudy models. An accurate projected rotational velocity is also
derived.Comment: 9 pages, 3 figures. Astrophysical Journal Letters, in pres
The Search for Stellar Companions to Exoplanet Host Stars Using the CHARA Array
Most exoplanets have been discovered via radial velocity studies, which are
inherently insensitive to orbital inclination. Interferometric observations
will show evidence of a stellar companion if it sufficiently bright, regardless
of the inclination. Using the CHARA Array, we observed 22 exoplanet host stars
to search for stellar companions in low-inclination orbits that may be
masquerading as planetary systems. While no definitive stellar companions were
discovered, it was possible to rule out certain secondary spectral types for
each exoplanet system observed by studying the errors in the diameter fit to
calibrated visibilities and by searching for separated fringe packets.Comment: 26 pages, 5 tables, 8 figure
Resolving asymmetries along the pulsation cycle of the Mira star X Hydrae
Context. The mass-loss process in Mira stars probably occurs in an asymmetric way where dust can form in inhomogeneous circumstellar molecular clumps. Following asymmetries along the pulsation cycle can give us clues about these mass-loss processes. Aims. We imaged the Mira star X Hya and its environnement at different epochs to follow the evolution of the morphology in the continuum and in the molecular bands. Methods. We observed X Hya with AMBER in J-H-K at low resolution at two epochs. We modelled squared visibilities with geometrical and physical models. We also present imaging reconstruction results obtained with MiRA and based on the physical a priori images. Results. We report on the angular scale change of X Hya between the two epochs. 1D CODEX profiles allowed us to understand and model the spectral variation of squared visibilities and constrain the stellar parameters. Reconstructed model-dependent images enabled us to reproduce closure phase signals and the azimuthal dependence of squared visibilities. They show evidence for material inhomogeneities located in the immediate environment of the star
Squared visibility estimator. Calibrating biases to reach very high dynamic range
In the near infrared where detectors are limited by read-out noise, most
interferometers have been operated in wide band in order to benefit from larger
photon rates. We analyze in this paper the biases caused by instrumental and
turbulent effects to estimators for both narrow and wide band cases.
Visibilities are estimated from samples of the interferogram using two
different estimators, which is the classical sum of the squared
modulus of Fourier components and a new estimator for which complex
Fourier components are summed prior to taking the square. We present an
approach for systematically evaluating the performance and limits of each
estimator, and to optimizing observing parameters for each. We include the
effects of spectral bandwidth, chromatic dispersion, scan length, and
differential piston. We also establish the expression of the Signal-to-Noise
Ratio of the two estimators with respect to detector and photon noise. The
estimator is insensitive to dispersion and is always more sensitive
than the estimator. However, the latter allows to reach better
accuracies when detection is differential piston noise limited. Biases and
noise directly impact the dynamic range of reconstructed images. Very high
dynamic ranges are required for direct exoplanet detection by interferometric
techniques thus requiring estimators to be bias-free or biases to be accurately
calibrated. We discuss which estimator and which conditions are optimum for
astronomical applications especially when high accuracy visibilities are
required. We show that there is no theoretical limit to measuring visibilities
with accuracies as good as which is important in the prospect of
detecting faint exoplanets with interferometers.Comment: 23 pages, 6 figures, accepted for publication in Ap
Diffraction-limited imaging at IR wavelengths using aperture masks and fully filled apertures
The performance of a phase recovery algorithm developed for speckle data collected using a pupil-plane mask has been investigated for use at near-infrared wavelengths. The method, based on the radio-astronomical self-calibration technique, has been tested alongside a state-of-the-art implementation of the Knox-Thompson scheme using both simulated and real specklegrams. Results indicate that the new procedure is as effective as the Knox-Thompson based image reconstruction scheme and is applicable to a wide range of astrophysically interesting sources
- …