229 research outputs found

    Finding a Place for Tumor-specific T Cells in Targeted Cancer Therapy

    Get PDF
    A goal in cancer therapeutics is to develop targeted modalities that distinguish malignant from normal cells. T cells can discriminate diseased cells based on subtle alterations in peptides displayed in association with MHC molecules at the cell surface. Recent success using the adoptive transfer of tumor-specific T cells has fueled optimism that this approach may find a place as a targeted therapy for some human cancers

    A Human Minor Histocompatibility Antigen Resulting from Differential Expression due to a Gene Deletion

    Get PDF
    Minor histocompatibility antigens (minor H antigens) are targets of graft-versus-host disease and graft-versus-leukemia responses after allogeneic human leukocyte antigen identical hematopoietic stem cell transplantation. Only a few human minor H antigens have been molecularly characterized and in all cases, amino acid differences between homologous donor and recipient proteins due to nucleotide polymorphisms in the respective genes were responsible for immunogenicity. Here, we have used cDNA expression cloning to identify a novel human minor H antigen encoded by UGT2B17, an autosomal gene in the multigene UDP-glycosyltransferase 2 family that is selectively expressed in liver, intestine, and antigen-presenting cells. In contrast to previously defined human minor H antigens, UGT2B17 is immunogenic because of differential expression of the protein in donor and recipient cells as a consequence of a homozygous gene deletion in the donor. Deletion of individual members of large gene families is a common form of genetic variation in the population and our results provide the first evidence that differential protein expression as a consequence of gene deletion is a mechanism for generating minor H antigens in humans

    Redox Regulation Facilitates Optimal Peptide Selection by MHC Class I during Antigen Processing

    Get PDF
    SummaryActivated CD8+ T cells discriminate infected and tumor cells from normal self by recognizing MHC class I-bound peptides on the surface of antigen-presenting cells. The mechanism by which MHC class I molecules select optimal peptides against a background of prevailing suboptimal peptides and in a considerably proteolytic ER environment remained unknown. Here, we identify protein disulfide isomerase (PDI), an enzyme critical to the formation of correct disulfide bonds in proteins, as a component of the peptide-loading complex. We show that PDI stabilizes a peptide-receptive site by regulating the oxidation state of the disulfide bond inΒ the MHC peptide-binding groove, a function that is essential for selecting optimal peptides. Furthermore, we demonstrate that human cytomegalovirus US3 protein inhibits CD8+ T cell recognition by mediating PDI degradation, verifying the functional relevance of PDI-catalyzed peptide editing in controlling intracellular pathogens. These results establish a link between thiol-based redox regulation and antigen processing

    Development of tumor-reactive T cells after nonmyeloablative allogeneic hematopoietic stem cell transplant for chronic lymphocytic leukemia.

    Get PDF
    PURPOSE: Allogeneic nonmyeloablative hematopoietic stem cell transplant (NM-HSCT) can result in durable remission of chronic lymphocytic leukemia (CLL). It is thought that the efficacy of NM-HSCT is mediated by recognition of tumor cells by T cells in the donor stem cell graft. We evaluated the development of CTLs specific for CLL after NM-HSCT to determine if their presence correlated with antitumor efficacy. EXPERIMENTAL DESIGN: Peripheral blood mononuclear cells obtained from 12 transplant recipients at intervals after NM-HSCT were stimulated in vitro with CLL cells. Polyclonal T-cell lines and CD8(+) T-cell clones were derived from these cultures and evaluated for lysis of donor and recipient target cells including CLL. The presence and specificity of responses was correlated with clinical outcomes. RESULTS: Eight of the 12 patients achieved remission or a major antitumor response and all 8 developed CD8(+) and CD4(+) T cells specific for antigens expressed by CLL. A clonal analysis of the CD8(+) T-cell response identified T cells specific for multiple minor histocompatibility (H) antigens expressed on CLL in six of the responding patients. A significant fraction of the CD8(+) T-cell response in some patients was also directed against nonshared tumor-specific antigens. By contrast, CLL-reactive T cells were not detected in the four patients who had persistent CLL after NM-HSCT, despite the development of graft-versus-host disease. CONCLUSIONS: The development of a diverse T-cell response specific for minor H and tumor-associated antigens expressed by CLL predicts an effective graft-versus-leukemia response after NM-HSCT

    Graft-Versus-Host Disease: A Surge of Developments

    Get PDF
    Stanley Riddell and Frederick Appelbaum review progress in preventing graft-versus-host disease following allogeneic hematopoietic cell transplantation for malignancies or other life-threatening blood diseases

    Restoration of CD28 Expression in CD28βˆ’ CD8+ Memory Effector T Cells Reconstitutes Antigen-induced IL-2 Production

    Get PDF
    The control of many persistent viral infections by Ag-specific cytolytic CD8+ T cells requires a concurrent virus-specific CD4+ Th cell response. This reflects in part a requirement of activated effector CD8+ T cells for paracrine IL-2 production as a growth and survival factor. In human CMV and HIV infection, the majority of differentiated virus-specific CD8+ T cells notably lose the ability to produce IL-2 but also lose expression of CD28, a costimulatory molecule. Analysis of the fraction of memory CD8+ T cells that continue to express CD28 revealed these cells retain the ability to produce IL-2. Therefore, we examined if IL-2 production by CD28βˆ’ CD8+ T cells could be restored by introduction of a constitutively expressed CD28 gene. Expression of CD28 in CD28βˆ’ CD8+ CMV- and HIV-specific CD8+ T cells reconstituted the ability to produce IL-2, which could sustain an autocrine proliferative response after Ag recognition. These results suggest that the loss of CD28 expression during differentiation of memory/effector CD8+ T cells represents a decisive step in establishing regulation of responding CD8+ T cells, increasing the dependence on CD4+ Th for proliferation after target recognition, and has implications for the treatment of viral disease with adoptively transferred CD8+ T cells

    CD27 Expression Promotes Long-Term Survival of Functional Effector–Memory CD8+Cytotoxic T Lymphocytes in HIV-infected Patients

    Get PDF
    Human immunodeficiency virus (HIV)-specific CD8+ T cells persist in high frequencies in HIV-infected patients despite impaired CD4+ T helper response to the virus, but, unlike other differentiated effector cytotoxic T lymphocytes, most continue to express the tumor necrosis factor receptor family member CD27. Because the ligand for CD27 (CD70) is also overexpressed in HIV-infected hosts, we examined the nature of expression and potential functional consequences of CD27 expression on HIV-specific CD8+ T cells. Analysis of CD27+ and CD27βˆ’ T cells derived from the same HIV-specific clone revealed that retention of CD27 did not interfere with acquisition of effector functions, and that after T cell receptor stimulation, CD27+ cells that concurrently were triggered via CD27 exhibited more resistance to apoptosis, interleukin 2 production, and proliferation than CD27βˆ’ T cells. After transfer back into an HIV-infected patient, autologous HIV-specific CD27βˆ’ T cells rapidly disappeared, but CD27+ T cells derived from the same clone persisted at high frequency. Our findings suggest that the CD27–CD70 interaction in HIV infection may provide CD27+ CD8+ T cells with a survival advantage and compensate for limiting or absent CD4+ T help to maintain the CD8 response

    Clonal kinetics and single-cell transcriptional profiling of CAR-T cells in patients undergoing CD19 CAR-T immunotherapy

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.Published versio

    Cytomegalovirus Viral Load and Virus-Specific Immune Reconstitution after Peripheral Blood Stem Cell versus Bone Marrow Transplantation

    Get PDF
    Peripheral blood stem cell (PBSC) products contain more T cells and monocytes when compared with bone marrow (BM), leading to fewer bacterial and fungal infections. Cytomegelovirus (CMV) viral load and disease as well as CMV-specific immune reconstitution were compared in patients enrolled in a randomized trial comparing PSBC and BM transplantation. There was a higher rate of CMV infection and disease during the first 100 days after transplantation among PBSC recipients (any antigenemia/DNAemia: PBSC, 63% vs BM, 42%, P = .04; CMV disease: PBSC, 17% vs BM, 4%, P = .03). By 2 years, CMV disease rates were similar. The early increase in CMV events correlated temporarily with lower CMV-specific CD4+ T helper and CD8+ cytotoxic T lymphocyte function at 30 days after transplantation in PBSC recipients. By 3 months after transplantation and thereafter, CMV-specific immune responses were similar between BM and PBSC recipients. In conclusion, higher CMV infection and disease rates occurred in PBSC transplant recipients early after transplantation. These differences may be because of a transient delay in CMV-specific immune reconstitution following PBSC transplantation
    • …
    corecore