41 research outputs found

    A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1

    Get PDF
    Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the ‘alternative clamp loader’ known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved ‘Pol ϵ binding module’ in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint

    Overview of biological database mapping services for interoperation between different 'omics' datasets

    No full text
    Abstract Many primary biological databases are dedicated to providing annotation for a specific type of biological molecule such as a clone, transcript, gene or protein, but often with limited cross-references. Therefore, enhanced mapping is required between these databases to facilitate the correlation of independent experimental datasets. For example, molecular biology experiments conducted on samples (DNA, mRNA or protein) often yield more than one type of 'omics' dataset as an object for analysis (eg a sample can have a genomics as well as proteomics expression dataset available for analysis). Thus, in order to map the two datasets, the identifier type from one dataset is required to be linked to another dataset, so preventing loss of critical information in downstream analysis. This identifier mapping can be performed using identifier converter software relevant to the query and target identifier databases. This review presents the publicly available web-based biological database identifier converters, with comparison of their usage, input and output formats, and the types of available query and target database identifier types.</p

    Relative Quantitative Comparisons of the Extracellular Protein Profiles of Staphylococcus aureus UAMS-1 and Its sarA, agr, and sarA agr Regulatory Mutants Using One-Dimensional Polyacrylamide Gel Electrophoresis and Nanocapillary Liquid Chromatography Coupled with Tandem Mass Spectrometry ▿ †

    No full text
    One-dimensional polyacrylamide gel electrophoresis followed by nanocapillary liquid chromatography coupled with mass spectrometry was used to analyze proteins isolated from Staphylococcus aureus UAMS-1 after 3, 6, 12, and 24 h of in vitro growth. Protein abundance was determined using a quantitative value termed normalized peptide number, and overall, proteins known to be associated with the cell wall were more abundant early on in growth, while proteins known to be secreted into the surrounding milieu were more abundant late in growth. In addition, proteins from spent media and cell lysates of strain UAMS-1 and its isogenic sarA, agr, and sarA agr regulatory mutant strains during exponential growth were identified, and their relative abundances were compared. Extracellular proteins known to be regulated by the global regulators sarA and agr displayed protein levels in accordance with what is known regarding the effects of these regulators. For example, cysteine protease (SspB), endopeptidase (SspA), staphopain (ScpA), and aureolysin (Aur) were higher in abundance in the sarA and sarA agr mutants than in strain UAMS-1. The immunoglobulin G (IgG)-binding protein (Sbi), immunodominant staphylococcal antigen A (IsaA), IgG-binding protein A (Spa), and the heme-iron-binding protein (IsdA) were most abundant in the agr mutant background. Proteins whose abundance was decreased in the sarA mutant included fibrinogen-binding protein (Fib [Efb]), IsaA, lipase 1 and 2, and two proteins identified as putative leukocidin F and S subunits of the two-component leukotoxin family. Collectively, this approach identified 1,263 proteins (matches of two peptides or more) and provided a convenient and reliable way of identifying proteins and comparing their relative abundances

    Complete and Integrated Pyrene Degradation Pathway in Mycobacterium vanbaalenii PYR-1 Based on Systems Biology

    No full text
    Mycobacterium vanbaalenii PYR-1 was the first bacterium isolated by virtue of its ability to metabolize the high-molecular-weight polycyclic aromatic hydrocarbon (PAH) pyrene. We used metabolic, genomic, and proteomic approaches in this investigation to construct a complete and integrated pyrene degradation pathway for M. vanbaalenii PYR-1. Genome sequence analyses identified genes involved in the pyrene degradation pathway that we have proposed for this bacterium. To identify proteins involved in the degradation, we conducted a proteome analysis of cells exposed to pyrene using one-dimensional gel electrophoresis in combination with liquid chromatography-tandem mass spectrometry. Database searching performed with the M. vanbaalenii PYR-1 genome resulted in identification of 1,028 proteins with a protein false discovery rate of <1%. Based on both genomic and proteomic data, we identified 27 enzymes necessary for constructing a complete pathway for pyrene degradation. Our analyses indicate that this bacterium degrades pyrene to central intermediates through o-phthalate and the β-ketoadipate pathway. Proteomic analysis also revealed that 18 enzymes in the pathway were upregulated more than twofold, as indicated by peptide counting when the organism was grown with pyrene; three copies of the terminal subunits of ring-hydroxylating oxygenase (NidAB2, MvanDraft_0817/0818, and PhtAaAb), dihydrodiol dehydrogenase (MvanDraft_0815), and ring cleavage dioxygenase (MvanDraft_3242) were detected only in pyrene-grown cells. The results presented here provide a comprehensive picture of pyrene metabolism in M. vanbaalenii PYR-1 and a useful framework for understanding cellular processes involved in PAH degradation

    Quantitative Analysis of Histone Exchange during Chromatin Purification

    No full text
    Central to the study of chromosome biology are techniques that permit the purification of small chromatin sections for analysis of associated DNA and proteins, including histones. Chromatin purification protocols vary greatly in the extent of chemical cross-linking used to prevent protein dissociation/re-association during isolation. Particularly for genome-wide analyses, chromatin purification requires a balanced level of fixation trapping native protein-protein and protein/DNA interactions, yet leaving chromatin sections soluble and accessible to affinity reagents. We have devised a quantitative methodology for optimizing levels of chemical cross-linking for affinity purification of chromatin sections using isotopically labeled media. We show that fine-tuning of chemical cross-linking is necessary for efficient isolation of chromatin sections when minimal histone/protein exchange is required.

    Isolation and characterization of 26- and 30-kDa rat liver proteins immunoreactive to anti-sterol carrier protein-2 antibodies

    No full text
    Although the existing literature suggests that the sterol carrier protein-2 (SCP-2) gene has only two initiation sites encoding for a 58- and a 15-kDa protein, respectively, this does not explain the profusion of other putative SCP-2-related proteins detectable on Western blotting. Two of these additional anti-SCP-2 immunoreactive proteins, 13.2 and 46 kDa, appear due to proteolytic processing of the two gene transcripts. However, the origin of additional immunoreactive rat liver proteins near 26 and 30 kDa is unclear. The latter proteins were consistently detected on Western blotting by three independent types of polyclonal antisera: anti-13.2-kDa SCP-2, anti-synthetic peptide from the amino-terminus of the 13.2-kDa SCP-2, and Protein A affinity-purified anti-synthetic peptide to the aminoterminus of 13.2-kDa SCP-2. To resolve whether the 26- and 30-kDa proteins are SCP-2 gene products, each protein was isolated from rat liver and purified to homogeneity as indicated by Tricine-SDS polyacrylamide gel electrophoresis, isoelectric focusing, and/or mass spectroscopy. Their masses, determined by MALDI-TOF mass spectroscopy, were 25.7 and 29.8 kDa, respectively. However, the mass spectral data were not consistent with either protein being an SCP-2 gene product. Peptide mass mapping of the 25.7-kDa protein revealed identity to the rat 25,784.79-Da glutathione-S-transferase. Furthermore, neither the mass nor the amino acid composition of the 29.8-kDa protein correlated with any SCP-2 gene product or dimerized SCP-2 gene product. A database search of the amino acid composition identified the protein as rat carbonic anhydrase. In summary, although the 26- and 29.8-kDa proteins may share some common epitopes with the 13.2-kDa SCP-2, they were not SCP-2 gene products
    corecore