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Abstract: Biomedical applications are one of the driving forces for Additive 

Manufacturing, however to extend the range of applications and markets new 

materials are required. A new type of biodegradable Polycaprolactone (PCL) based 

ink that is suitable for 3D inkjet printing was successfully developed. UV curable PCL 

was synthesized and mixed with Poly(ethylene glycol) di-acrylated (PEGDA) to 

prepare an ink with suitable viscosity for inkjet printing. Their mechanical properties 

as well as the printing accuracy were measured by nano-indentation and scanning 

electron microscopy. Post curing was applied to printed samples in order to study 

how post curing may influence sample properties. It was found that within 30min 

post-curing period, the sample’s surface which is direct illuminated by UV light 

increased from 31.22MPa to 70.20MPa while the bottom surface showed less 

incensement from 34.9MPa to 39.8MPa.  

Introduction 

3D Printing or Additive Manufacturing (AM), as a disruptive manufacturing 

technology, has been attracting increasing attention in recent years. Many studies 

have been carried out to enable AM to become a process that is able to manufacture 

end-use products. One of the potential applications for AM is in the making of 

biodegradable or bioresorbable medical products with the potential of tailored drug 

release functions. Some biomedical products require complex and strict pore 

structures to achieve enhanced cell adhesion and growth [1-3]. These requirements 

in pore structure and sizes are difficult to be controlled with current manufacturing 

techniques (such as foaming).  However with AM technology, the sizes and locations 

of each pore can be accurately controlled and this lends the possibility of being able 

to manufacture bespoke products. 

Polycaprolactone (PCL) is widely used in biomedicine as it can gradually decompose 

by random hydrolytic chain scission of the ester groups [4-5]. Some researchers 

have attempted to build PCL structures with additive manufacturing methods such as 

Powder Bed Fusion (i.e. laser sintering) or material extrusion [6-8]. However, little 

work has been done in processing PCL by 3D inkjet printing. Compared with other 

AM techniques, 3D inkjet printing has the potential of producing multi-material 

artefacts within a single process cycle with controlled material distribution. This 

facility can be used to manufacture products with localized drug distribution or 

degradation speeds. Therefore, developing a biodegradable material which is 
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suitable for 3D inkjet printing could bring the manufacturing of biomedical product 

into a brand new field. 

3D inkjet printing requires a low viscosity ink, which solidifies quickly after deposition 

hence photo-curing has been a popular method of achieving fast solidification for 

commercial materials. Although pure caprolactone does not cure under UV 

irradiation, groups (normally acrylated group) can be grafted onto the end of a PCL 

polymer chain to make it UV curable [9-10]. As printers have very strict requirements 

on ink viscosity, a diluent is also a necessary component to help adjust the inks 

viscosity. PolyEthyleneGlycol (diacrylated) (PEGDA), can be used as such a diluent, 

and has been widely used for UV curable biocompatible materials [11-13]. Some 

authors have suggested that a copolymer of PCL and PEG can help develop 

products with different surface function and modify the drug release profile of a 

material because PCL is hydrophilic and PEG is hydrophobic [14-15]. 

In this paper, the printability of UV curable PCL: Polycaprolactone di-methacrylated 

(PCLDMA) was assessed. Rheological data were collected with different PEGDA 

proportions in a temperature range from ambient temperature to 60ºC to help select 

suitable processing conditions and PEGDA concentration for printing. The 

synthesised UV curable PCL’s viscosity was adjusted by adding 30wt% of PEGDA 

and successfully printed by using a Dimatix DMP2800 inkjet printer.3D structures 

were then created with this ink and characterized to help understand the properties 

of this material.  

 

Methodology 

Ink preparation 

PCLDMA (synthesised) and PEGDA (Sigma-Aldrich average Mn~250) were added 

into an 8ml amber vial and stirred at room temperature for 15mins at 800rpm using 

an IKA RCT Basic IKAMAG Magnetic Stirrer (with Temperature Controller). 3wt% of 

photo-initiator (2,4-Diethyl-9H-thioxanthen-9-one(DETX),sigma-aldrich,98%) and 3wt% 

of accelerator (Ethyl 4-(dimethylamino)benzoate(EDB),sigma-aldrich,99wt%) were 

added into the PCLDMA:PEGDA mix and stirred at 85ºC for 5mins until all the 

solutes are fully dissolved. Before printing, the prepared ink required a degassing 

procedure to remove dissolved oxygen and to help minimize the 'oxygen inhibition' 

effect [17-18]. The degassing procedure was carried out by purging the mixed ink 

with nitrogen gas for 15minutes. This procedure created lots of Nitrogen bubbles 

within the ink which seriously reduces the droplet formation stability of the ink. 

Therefore the ink was prepared 24hrs prior to printing; the degassed ink was then 

settled to release the bubbles.  

Printability Assessment 
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The key parameters for determining ‘’printability’’ are viscosity and surface tension. 

Normally, viscosity is the most fundamental parameter used to decide whether an ink 

is printable or not. The printing viscosity range varies dependent on the printheads 

being used. Surface tension should also be taken into consideration. It has been 

reported that the inverse Ohnesorge number (Oh-1) can be used as the printing 

indicator (Z) to help predict an ink’s printability. Z takes both viscosity and surface 

tension into consideration and is shown following equation[16]. 

  
√   

 
 

Where  is density,   is characteristic length,   is surface tension of the fluid and   is 

viscosity of ink. 

The viscosity of the PCLDMA:PEGDA mixture (under shear rates of 100s-1 and 

1000s-1) was measured by a cone plate rheometer (Malvern Kinexus Pro) to identify 

the PCLDMA:PEGDA proportion and the processing temperature that would give a 

suitable viscosity for inkjet printing. Each measurement started at 25ºC with 5ºC 

increments up to 60ºC. A protocol of waiting 300s after reaching the test temperature 

was set to ensure the ink was in a steady state condition. At each temperature point 

and shear rate, the viscosity was recorded at 5s intervals within a 180s test time.. 

Surface tension was measured by a pendant drop method using a Kruss DSA100S. 

The shape was captured at the equilibrium state and used to calculate the surface 

tension. 

Sample properties assessment 

The ink with the final composition was then injected into a print cartridge. The 

injection procedure was carried out in the dark to prevent light irradiation and careful 

attention was paid to avoid bubble formation within the ink. The cartridge was 

wrapped with foil tape to make sure the ink was not cured inside the cartridge by 

ambient light. About 2ml of the prepared ink was injected into a disposable cartridge 

and printed by DimatixDMP-2800 material printer. The printed ink was cured by real-

time UV curing; a UV curing unit was mounted directly on to the printing unit (Figure 

1) to move in conjunction with the print direction. A further UV LED unit (intensity of 

1000mW/cm2) was used to examine the influence of different post-curing time (10 

minutes, 20 minutes and 30 minutes) on the mechanical properties of the printed 

parts.  

The mechanical properties of printed sample were characterized by nano-indentation 

at room temperature (Micro Materials, NanoTest NTX with hot stage and inert gas 

cabinet). Both the top and bottom surface were characterized. Load-depth curves 

were recorded on 5×5 grid with 100µm separation between each indentation. The 
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applying force was set to 5mN with a 0.25mN/s loading and unloading rate and a 

spherical indenter with 50µm radius was used. The Hardness is calculated by: 

  
 

 
 

 

    
 

Where   is applied load,   is the radius of the circle of contact. The radius of the 

circle of contact is calculated by follow equation: 

   
√  (     )  (     ) 

 
   

Where R is the radius of the spherical indenter,,   is the total penetration depth,   is 

the residual depth and c is correction constant for piling-up or sinking-in effect [19], 

The indentation modulus E can be calculated by: 

  
 

 

 

    
 

Where P and    are applied load and radius of circle of contact respectively,    is the 

elastic deformation depth. 

Mesh structures were printed to help understand the manufacturing accuracy that 

PCLDMA:PEGDA (70:30) ink could achieve. Printed mesh structures were sputter 

coated with Platinum and examined by SEM (XL30 ESEM Philips). 

 

Results and Discussion 

Printability Assessment 

The viscosity results of PCLDMA with different PEGDA proportions were measured 

(Table 1). As PEGDA is a diluent and only biocompatible after curing, when choosing 

the composition, the amount of PEGDA needs to be as low as possible within the 

printable viscosity range, in order to maximise the biodegradability of final product. 

PCLDMA with 30wt% of PEGDA at 60ºC was chosen as the final proportion in this 

paper based on the rheological tests and printing requirements. However, as 

different printheads have different printing viscosity ranges, this does not apply to all 

the piezo based printheads. The viscosity distributions of PCLDMA:PEGDA mixture 

with various proportions under different environment temperatures are given in Table 

1, which can help decide the optimum composition for the other printheads. 

As PEGDA is only bio-compatible but not biodegradable material, it will reduce the 

biodegradability of the final product. Therefore, when choosing the final composition, 

the one with higher PCLDMA concentration but still within printable range is 
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preferred. Based on this principle, PCLDMA:PEGDA (70:30) was chosen as the final 

composition, which will be used for following printing.  

The printability indicator, Z, for PCLDMA:PEGDA (70:30) was then calculated (Table 

3). It has been suggested that when the value of the printing indicator is between 1 

and 10, the ink will normally be printable [16]. From Table 2, it can be seen that 

based on these  calculations, the Z values of PCLDMA:PEGDA (70:30) at 60 ºC 

were in the printable range. 

The viscosity of the ink was measured throughout the whole ink preparation 
procedure to monitor viscosity variations (Table 3). It can be seen that after adding 
photo-initiators and being degassed, the viscosity of the ink increased by 5-10%. 
This was due to two reasons: the adding of solid content and a small amount of 
curing during the degassing procedure. As one may expect, adding high viscosity 
content will increase the viscosity of the ink. The photo-initiator and accelerator used 
in our experiment are both solids and they occupied 6wt% of the whole ink which led 
to viscosity increase. Also, the ink became quite reactive during degassing and as 
the degassing procedure was not carried out in a completely dark environment there 
will be small amount of curing which also increased the prepared ink’s viscosity.  

Real-time curing and Post-curing effect 

Five square specimens, 5mm (W)*5mm (L), were prepared for nano-indentation 

testing. The printing pattern and samples are shown in Figure 3 where 100 layers 

were printed. The final thicknesses of these square samples were ~500μm. 

The hardness and indentation modulus of printed samples with different post curing 

time were measured by nano-indentation (Table 4). The measurements were carried 

out on the sample’s top and bottom surface respectively. As the samples were 

produced by stacking up layers of material, those layers printed in the early stages 

will inevitably be repeatedly exposed to UV illumination when following layers are 

printed. This will lead to a printed sample which has a gradient of UV exposure time 

from bottom to top. As UV exposure time is normally related to curing level, this may 

eventually result in property deviation and therefore, both surfaces were measured 

separately. 

The indentation results (Table 4) showed the top and bottom surface of the sample 

has very similar properties before any post-curing treatment. The hardness and 

indentation modulus on both surface have variations however these are within the 

testing deviation range.  

The mechanical properties of the sample’s top surface, which was directly 

illuminated by UV light, had a significant increase after 10mins of post-curing (Table 

4 and Figure 4).However additional post-curing for 20mins and 30mins did not 

further influence these properties. The rise of hardness and modulus on the top 

surface after post-curing was mainly due to and increase of cross-link density. Prior 

work has shown that the hardness and modulus of a crosslink material is positive in 

relation to its crosslink density [20, 21]. At low crosslink density, polymer chains are 
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less restricted, therefore it can easily deform with an applied manifesting as a low 

hardness and modulus. As crosslink density increases those free segments are 

connected with each other building an increasingly dense network. The mobility of 

the polymer chain segments becomes restricted and the specimen will then show 

stronger resistance to an applied force. When a specimen was printed, the 

conversion of the C=C group into the covalent crosslink cannot normally reach 100%. 

During the post-curing procedure UV illumination will provide extra energy to help the 

residual C=C group form new crosslink and therefore, further increase the crosslink 

density and hence its hardness and modulus. 

Meanwhile, the properties of the sample’s bottom surface did not show a notable 

change with the increase of post-curing time. This could be because during the post-

curing procedure, samples were illuminated from the top surface and the UV 

irradiation needs to penetrate the whole sample before reaching the bottom surface. 

During the penetration procedure, the intensity of the UV light would be reduced by 

absorption from the sample and result in only a small quantity of radiation reaching 

the bottom surface. From the nano-indentation results, the bottom surface did not 

receive enough energy to achieve further crosslinking and therefore the properties 

remain unchanged. UV absorbance spectrums with a different thickness of cured ink 

films are currently under characterization to affirm this hypothesis and also help 

discover the penetration depth. 

Printing and Characterization 

Mesh structures were then printed and a schematic figure of the printing pattern was 

shown in Figure 5 (a). Meshes with three different wall thicknesses (150μm, 300μm 

and 500μm) were printed onto glass slides for futher SEM examination. The distance 

between each wall was set as 1mm to allow each printed vertical or horizontal wall to 

be seperated from each other. Ten layers of PCLDMA:PEGDA (70:30) were printed 

and the sample appearance is shown in Figure 6(b). 

The mesh structures were then observed under SEM (Figure 6). The actual printed 

wall thickness was measured and calculated to help analysing the dimensional 

variation between the printed structure and the original design. From the results in 

Table 5, it can be noticed that the printed mesh structure with larger designed wall 

thickness had less deviation percentage compared with the meshes with thinner 

walls. However the deviation was always around 40μm which would indicate that the 

processing accuracy of Dimatix material printer for PCLDMA:PEGDA (70:30) is 

around 40μm, when using printhead with 21μm nozzles. 

Figure 6 also showed that under the print conditions the PCLDMA:PEGDA (70:30) 

ink could not form accurate and sharp edges. Rectangular gaps were designed 

inside the mesh structure. However in the actual printed structure, the gap morphed 

into rounded rectangular shapes. Meanwhile, dislocation of printed ink droplets can 

be observed from the SEM pictures and causing rounded rectangular gaps as well 
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as curving walls. These might be due to the slow curing speed of the printed ink. 

Although, the ink was illuminated by UV light immediately after being printed, the 

illumination time was quite limited in a single scan. This is becausethe UV curing unit 

was attached and moving with the printhead. So the energy provided in a single 

scanning may not be enough to allow freshly deposited ink to become fully cured 

immediately. Therefore, merging and dislocation of the uncured ink droplet could 

happen due to gravity, movement of the platform and merging with the ink deposited 

in subsequent printing cycles. All these will lead to rounded edge and curing walls. 

However, as the illumination area of UV curing unit were larger than the printed area 

of each printing cycle, the previously printed ink can still receive UV illumination 

during the following printing. So the ink will receive discontinuous UV illumination 

and finally be cured after obtaining enough energy. But the curing time will be 

enlarged compared with continuous UV illumination. Increasing the curing speed 

could help printed ink cure in a shorter period of time, hence reduce the chance of 

merging and dislocation happening, improving the print quality. This could be 

achieved by either increasing the intensity of UV illumination or creatingan oxygen 

free environment. 

Figure 6 (d) is a SEM image showing a cured mesh surface in high magnification. 

Wrinkles (about 1 to 2μm) can be observed on the entire printed mesh structures’s 

surface. A similar self-wrinkling effect was observed by Chandra et al [22]. They 

suggested that this effect was mainly due to oxygen inhibition which caused 

crosslinking speed variation from the top to the bottom. When UV curable films were 

exposed to UV illumination within the presence of oxygen, a thin layer at the top 

surface will remain uncured due to the oxygen inhibition. A crosslink gradient would 

be formed through the depth direction because of oxygen concentration gradient 

formed at the surface by diffusion. This situation will lead to in-plane stress and 

cause surface wrinkle. In Chandra et al.’s work, they also concluded that by 

controlling the oxygen concentration in the environment, the size of surface wrinkle 

could also be controlled. 

Figure 7 is a printed curving mesh structure with PCLDMA: PEGDA (70:30) ink. 50 

layers were printed and surface profiling data Figure 7(d) showed the total height of 

the structure was around 250μm. Figure 8 shows optical microscopy images of a 

printed curving mesh structure. Similar effects were also observed that the ink did 

not fully cure immediately after deposition and droplets at the edges falling down to 

the substrate forming coarse structures at the base. 

Conclusion 

A PCLDMA: PEGDA ink that is suitable for 3D inkjet printing to produce 

biodegradable 3D structures has been demonstrated for the first time. For different 

printers, the proportion of PEGDA and processing temperature can be varied, which 

should be decided based on the given rheology database. 
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In this paper, PCLDMA: PEGDA (70:30) was chosen and observed to be suitable for 

a Dimatix DMP-2800 when printed at 60ºC. The prepared ink can be cured 

sufficiently to retain expected structures during printing and stable products can be 

produced. The hardness of printed samples was around 5MPa with an indentation 

modulus of 30MPa. These properties increased when a post-curing procedure was 

applied. However, only the mechanical properties at the top surface were improved. 

From SEM examination, it was found that print quality was influenced by curing 

speed and wrinkles were observed on the surface of the cured structures. For future 

work, the curing efficiency and printing qualities of PCLDMA:PEGDA (70:30) ink with 

different photo-initiator / accelerator ratios should be investigated. Oxygen inhibition 

effects will also be studied by performing printing under different oxygen 

concentration levels to investigate the impact on printing quality and mechanical 

properties of cured structure. 
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Figure1: Structure of printhead and UV curing unit. 

1061



 

 

Figure 2: Viscosity distribution plot of PCLDMA: PEGDA with different proportions 

between 25 ºC to 60 ºC when shear rate equals to 1000s- 

  
(a) (b) 

 
(c) 

Figure 3 Printed square samples for nano-indentation test: (a) Printing pattern, (b) 

Top view of printed square samples, (c) Side view of printed square samples.  
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(a) 

 

(b) 

Figure 4:Plots of nanoindentation data for samples with different postcuring time. (a) 

Hardness, (b) Indentation modulus,  
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(a) (b) 

Figure 5:Printed mesh samples for processing accurancy check (a) Schematic 

digram of printing pattern design (b) printed sample with different wall thickness 

(150μm, 300μm and 500μm from left to right) 

 

  
(a) (b) 

  
(c) (d) 

Figure 6: SEM pictures of printed mesh structure with different wall thickness: (a) 

150μm, (b) 300μm, (c) 500μm, (d) winkle found at sample surface 
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(a） 

 
(b) (c) 

 
(d) 

Figure 7: Curving mesh structure printing: (a) Printing pattern, (b) Sample 

appearance after taking off from glass slide, (c) Top view of printed sample, (d) 

Surface profiling of printed curving mesh structure 
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Figure 8: Microscopy pictures of printed curving mesh (1 division=100μm) 

 

 

 

 

 

 

 

 

Table 1：Viscosity of PCLDMA: PEGDA with different proportions between 25 ºC to 

60 ºC when shear rate equals to 1000s-1 

Temperature PCLDMA:PEGDA Proportion 

 50:50 60:40 70:30 80:20 90:10 100:0 

25 ºC 35.85±1.03 43.14±1.02 49.71±1.02 63.09±1.04 87.81±1.00 122.64±0.98 

30 ºC 29.22±1.00 34.97±1.00 40.07±0.97 50.45±0.98 69.68±0.95 96.14±0.92 

35 ºC 24.44±1.01 29.00±0.98 33.00±0.99 41.25±0.96 56.47±1.00 76.96±0.93 

40 ºC 20.90±1.00 24.44±1.00 27.58±1.00 34.21±0.99 46.45±0.99 62.64±0.94 

45 ºC 18.24±1.02 20.99±1.00 23.41±1.01 28.81±0.98 39.15±0.98 51.78±0.97 

50 ºC 16.18±1.02 18.33±1.03 20.15±1.03 24.51±1.00 33.05±0.99 43.28±1.00 

55 ºC 14.56±1.02 16.25±1.02 17.60±1.03 21.14±0.99 28.24±1.01 36.62±1.00 
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60 ºC 13.30±1.02 14.65±1.02 15.63±1.03 18.84±0.99 24.48±1.00 31.48±1.00 

 

Table 2: Physical properties and printing indicator value of PCLDMA: PEGDA (70:30) 

mixture at temperature of 25ºC and 60 ºC 

Temperature 

 

Nozzle 
Diameter 

(μm) 

Density 

(g/cm3) 

Viscosity  

 (cp) 

Surface 
Tension 
(mN/m) 

PI 

(Oh-1) 

25 ºC 21 1.08 49.71 37.26 0.58 

60 ºC 21 1.08 15.63 32.31 1.73 

 

Table 3: Viscosity monitoring of PCLDMA: PEGDA=70:30 sample between 55 ºC to 

60 ºC when shear rate equals to 1000s-1 

Temperature PCLDMA:PEGDA=70:30 

 Without PI and AC  With PI and AC  With PI and AC 
degassed 

50 ºC 20.15±1.03 20.44±1.02 22.27±1.01 
55 ºC 17.60±1.03 18.35±1.01 19.54±1.01 
60 ºC 15.63±1.03 16.57±1.02 17.55±1.04 

 

 

 

Table 4: Hardness and indentation modulus for printed PCLDMA:PEGDA (70:30) 

before and after postcuring. 

Curing Time Hardness 

(MPa) 

Indentation 

Modulus 

(MPa) 

Top Surface 0min 5.01±0.42 32.28±3.99 

 10mins 6.13±0.08 71.97±1.47 

 20mins 6.27±0.09 72.17±1.04 
 30mins 6.01±0.14 70.2±1.78 

Bottom Surface 0mins 4.84±0.44 28.44±1.87 

 10mins 5.07±0.20 34.90±1.27 

 20mins 5.09±0.19 35.01±1.84 

 30mins 5.75±0.08 39.88±2.01 
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Table 5: Comparison of actual printed wall thickness and designed wall thickness 

Designed Wall Thickness Printed Wall Thickness 
(Average) 

Deviation  
(%) 

150μm 194μm 29.3% 
300μm 344μm 14.7% 
500μm 463μm -7.4% 
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