331 research outputs found

    Propagation of highly nonlinear signals in a two dimensional network of granular chains

    Get PDF
    We report the first experimental observation of highly nonlinear signals propagating in a two dimensional system composed of granular chains. In this system one of the chains contacts two others to allow splitting and redirecting the solitary-like signal formed in the first chain. The system consists of a double Y-shaped guide in which high- and low-modulus chains of spheres are arranged in various geometries. We observed fast splitting of the initial pulse, rapid chaotization of the signal and sharp bending of the propagating acoustic information. Pulse and energy trapping was also observed in composite systems assembled from hard- and soft-particles in the branches

    Implications of Shock Wave Experiments with Precompressed Materials for Giant Planet Interiors

    Full text link
    This work uses density functional molecular dynamics simulations of fluid helium at high pressure to examine how shock wave experiments with precompressed samples can help characterizing the interior of giant planets. In particular, we analyze how large of a precompression is needed to probe a certain depth in a planet's gas envelope. We find that precompressions of up to 0.1, 1.0, 10, or 100 GPa are needed to characterized 2.5, 5.9, 18, to 63% of Jupiter's envelope by mass.Comment: Submitted As Proceedings Article For The American Physical Society Meeting On Shock Compression Of Condensed Matter, Hawaii, June, 200

    Predicting C-H/π\pi interactions with nonlocal density functional theory

    Full text link
    We examine the performance of a recently developed nonlocal density functional in predicting a model noncovalent interaction, the weak bond between an aromatic π\pi system and an aliphatic C-H group. The new functional is a significant improvement over traditional density functionals, providing results which compare favorably to high-level quantum-chemistry techniques but at considerably lower computational cost. Interaction energies in several model C-H/π\pi systems are in generally good agreement with coupled-cluster calculations, though equilibrium distances are consistently overpredicted when using the revPBE functional for exchange. The new functional correctly predicts changes in energy upon addition of halogen substituents.Comment: 5 pages, 4 figure

    Pet Care System

    Get PDF
    Contemporary society requires the average adult to juggle multiple tasks and commitments. These commitments are occasionally neglected as there is simply not enough time available in the day. Taking care of one’s pets is one example of a neglected responsibility; Pioneer Solutions has realized this difficulty that pet owners face. The solution that has been proposed, and that is currently being designed, is a system that will allow the owner to assure the well being of their pet via a website.  The user‐friendly website will allow the owner to monitor, feed, and exercise their pet without physically being at the residence

    Simulation of Particle Size Effect on Dynamic Properties and Fracture of PTFE-W-Al Composites

    Full text link
    Recent investigations of the dynamic compressive strength of cold isostatically pressed composites of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) powders show significant differences depending on the size of metallic particles. The addition of W increases the density and overall strength of the sample. To investigate relatively large deformations multi-material Eulerian and arbitrary Lagrangian-Eulerian methods, which have the ability to efficiently handle the formation of free surfaces, were used. The calculations indicate that the increased strength of the sample with fine metallic particles is due to the formation of force chains under dynamic loading. This phenomenon occurs even at larger porosity of the PTFE matrix in comparison with samples with larger particle size of W and higher density of the PTFE matrix.Comment: 5 pages, 6 figure

    Molybdenum sound velocity and shear modulus softening under shock compression

    Get PDF
    We measured the longitudinal sound velocity in Mo shock compressed up to 4.4 Mbars on the Hugoniot. Its sound speed increases linearly with pressure up to 2.6 Mbars; the slope then decreases up to the melting pressure of ∌3.8 Mbars. This suggests a decrease of shear modulus before the melt. A linear extrapolation of our data to 1 bar agrees with the ambient sound speed. The results suggest that Mo remains in the bcc phase on the Hugoniot up to the melting pressure. There is no statistically significant evidence for a previously reported bcc→hcp phase transition on the Hugoniot

    Tantalum sound velocity under shock compression

    Get PDF
    We used several variations of the shock compression method to measure the longitudinal sound velocity of shocked tantalum over the pressure range 37–363 GPa with a typical uncertainty of 1.0%%. These data are consistent with Ta remaining in the bcc phase along the principal Hugoniot from ambient pressure to ≈300 GPa, at which pressure melting occurs. These data also do not support the putative melting phenomena reported below 100 GPa in some static compression experiments

    Reply to “Comment on ‘Molybdenum sound velocity and shear modulus softening under shock compression’ ”

    Get PDF
    We respond to the Comment by Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] on their reinterpretation of our published data [Nguyen et al., Phys. Rev. B 89, 174109 (2014)]. In the original paper, we argued that there is no solid-solid phase transition along the Hugoniot at 2.1 Mbars. There is, however, a softening of the shear modulus starting at 2.6 Mbars. Errandonea et al. [Phys. Rev. B 92, 026101 (2015)] reinterpreted our data and concluded that there is a structural change near 2.3 Mbars on the Hugoniot. We will explore the differences and agreements in the two interpretations of our data

    Tantalum sound velocity under shock compression

    Get PDF
    We used several variations of the shock compression method to measure the longitudinal sound velocity of shocked tantalum over the pressure range 37–363 GPa with a typical uncertainty of 1.0%%. These data are consistent with Ta remaining in the bcc phase along the principal Hugoniot from ambient pressure to ≈300 GPa, at which pressure melting occurs. These data also do not support the putative melting phenomena reported below 100 GPa in some static compression experiments
    • 

    corecore