145 research outputs found

    Tine options for alleviating compaction in wheelings

    Get PDF
    Repeated trafficking and harvesting operations lead to high levels of compaction in inter-row wheelings used in asparagus (Asparagus officinalis) production. This reduces soil porosity and infiltration resulting in water ponding on the soil surface. Even on gently sloping land this can result in runoff generation and an increased risk of soil erosion. A winged tine (WT) is currently used by a leading asparagus grower to loosen compacted inter-row wheelings. In order to test the effectiveness of this tine for alleviating compaction and implications for runoff and soil erosion control, it was evaluated alongside several other tine configurations. These were a narrow tine (NT); a narrow tine with two shallow leading tines (NSLT); a winged tine with two shallow leading tines (WSLT); and a modified para-plough (MPP). Testing was conducted under controlled conditions on a sandy loam soil in the Soil Management Facility at Cranfield University, Bedfordshire, UK. Tine performance was assessed at 3 depths (175, 250 and 300 mm) by draught force; soil disturbance (both above and below ground); specific draught for a given level of soil disturbance; surface roughness; and estimated change in soil bulk density. The effectiveness of tines for compaction alleviation and potential for mitigating runoff and soil erosion varied with depth. The most effective tines were found to be the MPP NSLT and the WSLT at 175 mm, 250 mm and 300 mm depth, respectively

    Tolerable versus actual soil erosion rates in Europe

    Get PDF
    Erosion is a major threat to soil resources in Europe, and may impair their ability to deliver a range of ecosystem goods and services. This is reflected by the European Commission's Thematic Strategy for Soil Protection, which recommends an indicator-based approach for monitoring soil erosion. Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Therefore, accurate spatial data on both soil loss and soil genesis are required, especially in the light of predicted changes in climate patterns, notably frequency, seasonal distribution and intensity of precipitation. Rates of soil loss are reported that have been measured, modelled or inferred for most types of soil erosion in a variety of landscapes, by studies across the spectrum of the Earth sciences. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition. This paper reviews the concept of tolerable soil erosion and summarises current knowledge on rates of soil formation, which are then compared to rates of soil erosion by known erosion types, for assessment of soil erosion monitoring at the European scale

    Physical soil quality indicators for monitoring British soils

    Get PDF
    The condition or quality of soils determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of its capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs were tested for robustness, spatial and temporal variability and expected rate of change using statistical analysis and modelling. Six SQIs were prioritised; packing density, soil water retention characteristics, aggregate stability, rate of erosion, depth of soil and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programs

    The role of conservation soil management on soil and water protection at different spatial scales

    Get PDF
    Agriculture has a direct impact on the soil environment, altering soil properties, surface characteristics and erosion risk. This has led to a move away from conventional tillage to the adoption of conservation practices, aiming to minimise soil disturbance and reduce erosion. The effectiveness of this has been shown in studies from the USA, but equivalent research in Europe is limited. The present study investigated losses of soil, water, nutrients and carbon from different tillage regimes. Two UK sites were used – Loddington (Leicestershire, on heavy clay) and Tivington (Somerset on sandy clay loam). Three cultivations were applied - conventional (deep, inversion ploughing), and two forms of conservation tillage - SOWAP (non-inversion, shallow tillage), and Farmer Preference (non-inversion, deep tillage). Treatment effects were investigated at three spatial scales, ranging from field based erosion plots (0.05 ha), to micro-plots (1.5 m2), to soil aggregate tests. Results from 2004 to 2006 showed that adoption of conservation tillage did not consistently reduce losses of soil, water, nutrient and carbon, due to high temporal variability. Notable differences were found between sites. Runoff coefficients ranged from 0.39-0.46% at Loddington, and 2.43-3.82% at Tivington. Soil losses at Loddington were below 2 t ha-1 y-1, but higher at Tivington (3.47 t ha-1 y-1). Conservation tillage led to notable changes in soil properties and surface characteristics, including a decrease in bulk density and increases in organic matter, micro-topography and residue cover. Absolute values of erosion from small scale investigations could not be extrapolated directly to field scale results. Relative treatment ranks gave better comparisons, although results were not consistent for all small scale methods, due to high levels of variability. Caution should be used when extrapolating between spatial scales. Further work is required to understand the links between temporal and spatial fluctuations in soil, surface and rainfall characteristics and erosion processes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Do temperature and moisture conditions impact soil microbiology and aggregate stability?

    Get PDF
    Purpose: Studies predicting the impacts of climate change on erosion have considered numerous variables, such as rainfall erosivity and vegetation cover, but have not considered potential changes in soil erodibility. Erodibility is an intrinsic property of the soil, strongly correlated with the stability of soil aggregates. It is influenced by soil physico-chemical attributes, including the microbiological community. The study aim was to determine how shifts in temperature and moisture conditions, which other studies have shown affect microbiological communities, might affect aggregate stability. Methods: Using an experimental approach with laboratory microcosms, aggregates from a sandy loam soil and a clay soil were incubated at three temperatures and three moisture conditions in a factorial experimental design. Aggregate stability was quantified using rainfall simulation. Microbiological indicator metrics were measured to evaluate treatment microbiological impacts, including community composition (PLFA), biomass carbon, and respiration. Results: Temperature and moisture content affected aggregate stability significantly, but differently for the two soil types tested. For the sandy loam soil, aggregate stability decreased significantly with increasing moisture content. For the clay soil, aggregate stability increased significantly with increasing temperature. For both soil textures, temperature and moisture content affected microbiological community composition and respiration. Regression analysis indicated that microbiological properties were significant predictors of aggregate stability. Conclusion: Our results emphasise the dynamic nature of soil aggregate stability. Changes in microbiological metrics suggest possible biological mechanisms for aggregate stability changes, which should be investigated further to better understand the potential impacts of climate change on soil erodibility and erosion.Natural Environment Research Council (NERC): NE-M009106-1 BBSR

    Blood flow response to orthostatic challenge identifies signatures of the failure of static cerebral autoregulation in patients with cerebrovascular disease

    Get PDF
    Autorregulació cerebral; Malaltia cerebrovascular; Òptica difusaAutorregulación cerebral; Enfermedad cerebrovascular; Óptica difusaCerebral autoregulation; Cerebrovascular disease; Diffuse opticsBackground The cortical microvascular cerebral blood flow response (CBF) to different changes in head-of-bed (HOB) position has been shown to be altered in acute ischemic stroke (AIS) by diffuse correlation spectroscopy (DCS) technique. However, the relationship between these relative ΔCBF changes and associated systemic blood pressure changes has not been studied, even though blood pressure is a major driver of cerebral blood flow. Methods Transcranial DCS data from four studies measuring bilateral frontal microvascular cerebral blood flow in healthy controls (n = 15), patients with asymptomatic severe internal carotid artery stenosis (ICA, n = 27), and patients with acute ischemic stroke (AIS, n = 72) were aggregated. DCS-measured CBF was measured in response to a short head-of-bed (HOB) position manipulation protocol (supine/elevated/supine, 5 min at each position). In a sub-group (AIS, n = 26; ICA, n = 14; control, n = 15), mean arterial pressure (MAP) was measured dynamically during the protocol. Results After elevated positioning, DCS CBF returned to baseline supine values in controls (p = 0.890) but not in patients with AIS (9.6% [6.0,13.3], mean 95% CI, p < 0.001) or ICA stenosis (8.6% [3.1,14.0], p = 0.003)). MAP in AIS patients did not return to baseline values (2.6 mmHg [0.5, 4.7], p = 0.018), but in ICA stenosis patients and controls did. Instead ipsilesional but not contralesional CBF was correlated with MAP (AIS 6.0%/mmHg [− 2.4,14.3], p = 0.038; ICA stenosis 11.0%/mmHg [2.4,19.5], p < 0.001). Conclusions The observed associations between ipsilateral CBF and MAP suggest that short HOB position changes may elicit deficits in cerebral autoregulation in cerebrovascular disorders. Additional research is required to further characterize this phenomenon.The funders did not have any role in study design, execution and data interpretation. This work was funded by Redes Temáticas de Investigación Cooperativa (RETICS-INVICTUS RD012/0014 and RD16/0019/0010), Fundació CELLEX Barcelona, Ministerio de Economía y Competitividad/FEDER (PHOTODEMENTIA, PHOTOMETABO, DPI2015–64358-C2–1-R, PRE2018-085082), Instituto de Salud Carlos III/FEDER (FIS PI09/0557, MEDPHOTAGE, DTS16/00087), the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV-2015-0522), the Obra Social “la Caixa” Foundation (LlumMedBcn), Institució “Centres de Recerca de Catalunya”, “Agència de Gestió d’Ajuts Universitaris i de Recerca”-Generalitat (2017SGR-1380), LASERLAB-EUROPE IV (EU-H2020 654148), Whitaker International Program of the Institute for International Education, T32 HL007954 Multidisciplinary training in cardiovascular biology, Marie Curie initial training network (OILTEBIA 317526), Marie Sklowdowska-Curie-COFUND (H2020, ICFOstepstone 2, 71329), “Fundació La Marató TV3” (201709.30, 201709.31), São Paulo Research Foundation (FAPESP) through 2012/02500–8 and National Institutes of Health (R01-NS060653, K24-NS058386, R24-HD050836, P41-EB015893, DP2-HD101400, U54-HD086984)

    Efficacy of selected phosphorous sorbing materials (PSMs) to enhance the orthophosphate sorption capacity of filter socks

    Get PDF
    Agricultural phosphate (PO43‐) is a major cause of water quality compliance failures. Filter socks (FS) are a sediment‐control method proven to be effective at removing sediment and sediment bound‐P. Within the water and wastewater treatment industries phosphorous sorbing materials (PSMs) are widely used to remove reactive PO43‐. Combining PSMs with FS provides an opportunity to concomitantly remove sediment, sediment bound‐P and PO43‐ from agricultural runoff. A column experiment was undertaken to evaluate the efficacy of selected PSMs to remove PO43‐ across a range of PO43‐ concentrations (0.08, 0.26 and 1.3 mg/l) and contrasting FS fill media (PAS 100 Compost and Woodchip). The results indicate that Ca‐enriched ferrihydrite removed up to 99% of PO43‐, and was the only PSM to reduce PO43‐ to below the target value of <0.05 mg/l. An initial cost benefit analysis indicates that PSM‐enhanced FS are a viable option to remove PO43‐ from agricultural runoff

    Efficacy of mulch and tillage options to reduce runoff and soil loss from asparagus interrows

    Get PDF
    In the UK, conventional asparagus cultivation practices on sloping land, erodible soils and increased frequency of extreme rainfall events combine to promote runoff generation and soil loss, particularly from interrows. This instrumented field study investigated the interactive effect of mulch and shallow soil disturbance (working depth of 0.175 m) on reducing runoff and soil loss. Ten treatments were installed in a commercial asparagus field near Ross-on-Wye (England, UK) during May 1st–July 17th, 2012. Straw and compost were applied to the interrows at high and low application rates (straw = 5 t ha−1 and 3 t ha−1 and compost = 18 t ha−1 and 8 t ha−1, respectively), both with or without shallow soil disturbance (SSD and Non-SSD) as compared with a bare soil, unamended Control. Across five sampling periods, Non-SSD straw mulch applied at 5 t ha−1 and 3 t ha−1; Non-SSD compost mulch at 18 t ha−1; and straw mulch applied at 5 t ha−1 with SSD all significantly reduced cumulative total soil loss by 53–72% as compared with the Control. Further, mulch treatments with SSD were in general less effective at reducing total soil loss as compared to non-SSD mulch treatments. Compost application was less effective than straw, due to sub-optimal compost blanket depths as dictated by N restrictions for Nitrate Vulnerable Zones, in which the study took place. Despite an overall reduction in total soil loss of 72% (associated with Non-SSD straw mulch applied at 5 t ha−1), soil erosion rates exceeded 1.4 t ha−1 yr−1, considered to be a tolerable erosion rate in the EU. In addition, measured sediment concentrations in the runoff consistently exceeded the EU water quality guideline value of 25 mg l−1. The results indicate that the efficacy of the treatments tested was not adequate to reduce soil erosion in commercial asparagus fields in the UK to tolerable rates. This may in large part be due to daily foot trafficking events that occur during the asparagus harvesting period (April–June) which disturbs and degrades the treatments applied reduing their efficacy. This study demonstrates that additional research is required in order to identify effective erosion control measures to ensure the sustainability of commercial asparagus production systems in the U
    corecore