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Abstract 

Agriculture has a direct impact on the soil environment, altering soil properties, surface 
characteristics and erosion risk. This has led to a move away from conventional tillage 
to the adoption of conservation practices, aiming to minimise soil disturbance and 
reduce erosion. The effectiveness of this has been shown in studies from the USA, but 
equivalent research in Europe is limited. 

The present study investigated losses of soil, water, nutrients and carbon from different 
tillage regimes. Two UK sites were used – Loddington (Leicestershire, on heavy clay) 
and Tivington (Somerset on sandy clay loam). Three cultivations were applied - 
conventional (deep, inversion ploughing), and two forms of conservation tillage - 
SOWAP (non-inversion, shallow tillage), and Farmer Preference (non-inversion, deep 
tillage). Treatment effects were investigated at three spatial scales, ranging from field 
based erosion plots (0.05 ha), to micro-plots (1.5 m2), to soil aggregate tests.  

Results from 2004 to 2006 showed that adoption of conservation tillage did not 
consistently reduce losses of soil, water, nutrient and carbon, due to high temporal 
variability. Notable differences were found between sites. Runoff coefficients ranged 
from 0.39-0.46% at Loddington, and 2.43-3.82% at Tivington. Soil losses at Loddington 
were below 2 t ha-1 y-1, but higher at Tivington (3.47 t ha-1 y-1). Conservation tillage led 
to notable changes in soil properties and surface characteristics, including a decrease in 
bulk density and increases in organic matter, micro-topography and residue cover. 

Absolute values of erosion from small scale investigations could not be extrapolated 
directly to field scale results. Relative treatment ranks gave better comparisons, 
although results were not consistent for all small scale methods, due to high levels of 
variability. Caution should be used when extrapolating between spatial scales.  

Further work is required to understand the links between temporal and spatial 
fluctuations in soil, surface and rainfall characteristics and erosion processes. 
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1 Overview 

1.1 Introduction 

There have been numerous studies quantifying the effects of different land 

management practices on runoff generation and sediment production. Rarely are 

these effects explained in terms of changes to soil properties and surface 

characteristics. This present study will investigate runoff and soil loss generation 

under different land management practices and use measurements of soil and 

surface properties to explain these results. In addition, this study will investigate 

nutrient and carbon loss associated with generated surface runoff and eroded soil. 

Research into soil erosion and erodibility has been carried out at a variety of 

different spatial scales, from whole catchments (several hectares) to individual 

soil aggregates (<5mm). At the smallest scale soil aggregates are used as 

indicators of soil quality and susceptibility to erosion (Bryan 1968). The methods 

used are relatively cheap, quick and replicable compared to field or catchment 

scale erosion studies and hence a great deal of research has been undertaken in 

this area. Erosion studies have been carried out at other spatial scales where 

erosion rather than erodibility is quantified. Micro-plots, usually one square 

metre or less are used in conjunction with rainfall simulators. Field erosion plots 

(of several hundred square metres), sub-catchments and catchments (hectares) are 

used, relying on natural rainfall events. These larger scales investigations are 

costly, in terms of set up times and financial requirements for instrumentation 

and maintenance. Consequentially, it is rare to find a study which encompasses 

more than one spatial scale. One exception to this was a project based in Sri 

Lanka that looked at four different scales, from plots to an entire catchment 

(Hudson 1981). However, such an approach is uncommon, especially in Europe. 

Of the few studies to have looked at erosion at different spatial scales, only a 

small proportion considered the impact of different tillage or cropping regimes 

on erosion rates or processes.  
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The present study is part of an EU Life Environment project, SOWAP (SOil and 

WAter Protection in Northern and Central Europe). The SOWAP project 

represents collaboration between partners from industry, NGO’s, academic 

institutions and farmers from four European countries. The SOWAP project sets 

out to assess the effects of conventional and conservation agriculture on the 

environment, in terms of soil and water loss, terrestrial, avian and aquatic 

ecology and socio-economic indicators, such as crop yields. This type of 

information is lacking from European studies (Holland 2004). Through the 

SOWAP project, this current study aims to investigate runoff and soil erosion at 

three different spatial scales of investigation; field plots (0.05 hectare), micro-

plots (1.5m2) and soil aggregates (3.35-5mm).   

There will be several outcomes from this study: 

I whether a move from conventional to conservation soil management 

practices will reduce soil erosion, runoff and associated nutrient and carbon 

losses 

II whether micro-plot scale assessment of erosion can be used to indicate 

treatment differences of erosion at the field scale 

III whether small scale assessment of soil erodibility can be used as a quick, 

reliable tool to indicate soil erosion risk at a farm scale in the UK. The 

implication of this is especially important for those farms involved in current 

European stewardship schemes e.g. the Entry Level Scheme and Cross-

Compliance. 

1.2 Background and Literature Review 

The following section aims to set this research in context with regard to the effect 

of land management on erosion. This includes discussion of the global 

importance of soil and soil erosion (1.2.1), an overview of the present situation in 

the EU (1.2.2), England and Wales (1.2.3), an examination of the mechanisms 
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and processes of soil erosion (1.2.4 and 1.2.5) and a review of how soil erosion is 

quantified (1.2.6). Summation of the literature is then given to identify the 

research gaps that this current research will address. 

1.2.1 Global importance of soil and implication of soil erosion 

Soils are vital to a sustainable existence. They have six main functions: 

I supporting ecological habitats and biodiversity 

II providing a platform for infrastructural developments 

III providing raw materials including water, minerals and other natural 

resources such as peat 

IV producing food and fibre requirements for the human population 

V facilitating crucial environmental interactions between the atmosphere, the 

earth’s geology, water and land (EA 2004a) 

VI protecting the world’s cultural heritage 

 
Figure 1.2-1 Environmental effects of soil degradation. Reproduced from Holland 
(2004). 

Soil erosion is a natural phenomenon, eroding and forming at a sustainable rate. 

Human interference, primarily through agriculture, has increased soil erosion 

rates above those of soil formation (Hudson 1995). The ability of soil to sustain 
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its functions is at risk due to erosion in particular, as a result of land 

management. An increase in soil loss above its formation rate will lead to a 

decline in soil ‘health’ (EA 2004b). The impact of degraded soils on the 

environment has been summarised in Figure 1.2-1. 

Soil damage from agriculture is a global problem. Increases in agricultural food 

production are still needed to meet the demands of an estimated 98 countries with 

800 million malnourished people (Benites & Vaneph 2001). The Environment 

Agency for England and Wales (EA 2004) estimated that globally there has been 

a 23% degradation of available usable land. Desertification affects nearly half of 

Africa, and severe water and wind erosion affect parts of Asia, China and India. 

Human-induced soil degradation affects 15% of the total land surface (Oldeman 

et al. 1991). This has been broken down into major terrain divisions (Table 

1.2-1). 

Table 1.2-1 Worldwide human-induced soil degradation: major terrain division of 
the GLASOD map. Modified from Oldeman et al. 1991 

Human-Induced Soil Degradation Total Land Surface Terrain Divisions 

million hectares % million hectares 

Africa 494 16.66 2966 

Asia 748 17.58 4256 

South America 243 13.74 1768 

Central America 63 20.59 306 

Northern America 95 5.40 1885 

Europe 219 23.05 950 

Australia 103 11.68 882 

World 1964 15.09 13013 

It is not just the impact of soil and water loss that is of global importance, 

agriculture has a direct impact on the quality of its surrounding water courses. 

The US Environmental Protection Agency or EPA reported in 1992, that 

agriculture was one of the primary contributors of surface water pollution from 

siltation and pollution from nutrients and pesticides (Hill & Mannering 1995). 
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Risk of water pollution from nutrients (specifically nitrogen and phosphorus) is 

especially high from agricultural land just after the surface application of 

fertilisers. Ground water supplies of drinking water are polluted by nutrients via 

leaching from agricultural fields. Ground water contamination by nitrate is of 

particular concern. In 2002, over half of the total area of England (55%) was 

designated as Nitrate Vulnerable Zones (NVZs), with 60% of the nitrate coming 

from agricultural fields (DEFRA 2004b).  Costing each farm an estimated £200 

per year to rectify, resulting in a country wide combined total cost of £20 million 

per annum (DEFRA 2003). Nitrate loss from agricultural occurs via runoff and 

nitrate enriched eroded sediment (Zheng et al. 2005).  

Phosphorus loss is another cause for concern, being identified as a primary cause 

of eutrophication (Plate 1.2-1), a problem especially in Europe (Miller 2004). 

Loss of phosphorus occurs when dissolved concentrations are high at the soil 

surface. Rapid transfer may occur into surface runoff or enriched sediment which 

is lost via erosion (Zheng et al. 2005). Between 1931 and 1991 England and 

Wales saw a fourfold increase in phosphorus pollution of water (EA 2004a), with 

over 50% of the rivers containing artificially high phosphate concentrations. 

Zheng et al. (2005) found that loss of phosphorus associated with enriched 

sediment could be mitigated by a reduction in the amount of tillage undertaken 

on a field. 

The presence of high concentrations of nutrients (in particular nitrogen and 

phosphorus) within a water body are causes of eutrophication. Natural water 

courses generally have low nutrient contents and are described as being 

oligotrophic. They become eutrophic when nutrients no longer become limiting 

to the production of biological material. In water bodies this results in the growth 

of phytoplankton most easily seen as algal blooms (Plate 1.2-1). This results in 

depleted dissolved oxygen levels within the water body, and in extreme cases, 

hypoxia which is detrimental to oxygen dependant aquatic organisms, such as 

fish.  

http://www.defra.gov.uk/environment/water/quality/nitrate/nvz.htm
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Plate 1.2-1 Eutrophication of an English river (Buckinghamshire)  

On-site losses of nutrients from agricultural fields are also of great concern to the 

farmer. Nitrogen and phosphorus are both essential nutrients to plant growth, as 

well as potassium. The loss of these primary nutrients from the soil environment 

directly impacts crop productivity and yield. Nitrogen is important for rapid plant 

growth, leaf quality and seed and fruit formation. Phosphorus is essential in plant 

energy reactions allowing the conversions of light into chemical energy. 

Potassium maintains plant turgidity and is involved with enzyme reactions. 

Potassium is also important in boosting plant resistance to disease and drought. 

Reducing nutrient loss by runoff and/or sediment saves the farmer from having to 

apply increased amounts of NPK fertilisers. 

Although not a primary nutrient soil organic carbon (SOC) is vital for crop 

productivity (Charman & Murphy 2000) and soil health. Increases in tillage 

regimes and associated erosion have led to a decline in SOC. This has left a 

deficiency within many soil systems, with an estimated 18% of organic carbon 

lost in English soils between 1980 and 1995 (DEFRA 2004). More recently, 

work by Bellamy et al. (2005) has shown that between 1978 and 2003 soil carbon 

was lost at a mean rate of 0.6% yr-1 in England and Wales. Where carbon levels 

are low, farmers can apply additional organic matter or incorporate previous crop 
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residues (Charman & Murphy 2000). Soil organic carbon has also been linked to 

an increase in biological activity and with the stability of soil aggregates 

(Charman & Murphy 2000). The importance of SOC has been recently 

recognised, having been proposed as a soil quality indicator in Action 11 within 

the first Soil Action Plan for England (DEFRA 2004a). However, there is little 

known as to the relationships between SOC and soil, water and plant variables 

under different land managements and climates, due to temporal and spatial 

variation in SOC (Verheijen et al. 2005). 

Currently a topical subject, the ability of a soil to store carbon, known as 

sequestration, is important in the reduction of the green house gas, carbon 

dioxide. Autotrophs or primary producers initially fix carbon dioxide from the 

atmosphere, leading to the eventual storage of carbon within the soil environment 

(Killham 1994). This is part of the carbon cycle. It is estimated that 10 billion 

tonnes of carbon is stored within UK soils (EA 2004). Soil carbon sequestration 

may mitigate against one-third of yearly increases in atmospheric carbon dioxide 

(Smith 2004). This effect is estimated at being limited to 20-50 years as soils 

reach equilibrium (i.e. reach saturation point) and may be reversed with land use 

change (Smith 2004). Paustian et al. (1997) identified that some management 

practices in temperate climates can increase soil carbon content. Practices 

included the retention of crop residues and, related to this, an increase of soil 

organic matter (Holland 2004) and a reduction in tillage operations. Owens et al. 

(2002), observed that a reduction in tillage may reduce carbon transport by 

lowering concentrations within eroded sediment. However, a reduction in loss of 

eroded sediment was more effective at minimising carbon movements than 

decreases in carbon concentration.  

In addition to carbon dioxide, soil is important in the emission of other trace 

greenhouse gases such as methane (CH4) and nitrous oxide (N2O) (Smith & 

Conen 2004). In particular the emission of nitrous oxide can be reduced by 

improving diffusion of the gas throughout the soil matrix, by maintaining 
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drainage and avoiding anaerobic conditions (Holland 2004). This could be 

achieved by the long term adoption of conservation based tillage practices, 

although short term emissions would be expected to increase until the soil 

structure had become well established (Holland 2004).  

Conservation of soil biodiversity is important in the maintenance of soil health 

and resistance to erosion. There is a positive feedback mechanism by which 

conserving soil and soil biota is essential for soil processes such as nutrient 

cycling, organic matter and carbon breakdown, improvement of soil structure and 

increase in aggregate stability (Brady & Weil 2002). These changes in soil 

properties can lead to a reduction in soil erosion (and thus conservation of soil 

biodiversity) by increasing the resistance to breakdown, increasing drainage and 

therefore reducing the risk of overland flow and sediment generation. Soil 

ecology is also fundamental to numerous food chains. 

A move towards better agricultural land management practices should alleviate 

some of the threats to the environment (Benites & Vaneph 2001) including the 

world’s soil and water resources, as mentioned previously. Other outcomes may 

include long term benefits of higher crop yields coupled with a reduction in input 

of labour and capital due to fewer required field operations. However, short term 

decline in crop yield can be found and increases in capital needed due to the 

purchasing of specialised equipment. 

1.2.2 Soil Protection in Europe 

In the past, soil was not recognised as a vital, non-renewable resource, but a 

better understanding of natural capital has led to a recent change within the EU 

(Gobin et al. 2004). The EA (2004) estimate that within the EU 16% of land is 

affected by soil degradation, while Oldeman et al. (1991) calculated 23% 

degradation representing 1,964 million hectares (Table 1.2-1). Of the 23% 

degraded land Oldeman et al. (1991) calculated that 12% was attributable to 

water erosion and just over 4% from wind erosion. In Europe the average 
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formation rate of soil is 0.5 to 1 Mg ha-1 (Troeh & Thompson 1993), however 

average losses on cultivated arable land are generally greater than the formation 

rates. Losses are highly variable e.g. it is estimated that in the average UK rates 

of erosion range between 0-20 t ha-1 per annum (Morgan 2005; Gobin et al. 

2004). These erosion rates are not sustainable. 

In 2002 the European Parliament and Council adopted the Sixth Environment 

Action Programme ‘Our Future, Our Choice’, first published in 2001 (EC 2001). 

This programme runs until 2012, by which time the European Commission must 

have prepared seven Thematic Strategies covering different areas of the 

environment; one of which is soils (EUROPA 2006). The objectives of annex 

two within the erosion mandate are: 

I soils and their functions are to be protected against erosion, in relation to 

the viability of agricultural land  

II information on soil is to be synchronised throughout Europe by use of data 

networks and soil surveys  

III a sustainable, EU soil protection policy on erosion should be developed, 

based on the concepts of prevention and precaution 

IV soil protection should be integrated within important EU policies 

V differences in local and regional needs should be recognised, and integrated 

into soil protection policies (Van-Camp et al. 2004 & 2004b). 

The use of conservation agriculture has been extensively researched in North 

American (Uri et al. 1998), in Canada (McLaughlin & Mineau 1995) and 

Australia (Vere 2005). In the EU however, conservation agriculture as a concept 

has involved much less study. Successful European adoption of conservation 

agriculture may be constrained by several factors, including insufficient support 

for the farming community regarding access to sufficient information about new 
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techniques, the financial implications and the lack of support groups with other 

farmers (Nelson 2006). Appropriate incentives for following conservation 

orientated farming practices are paramount to successful adoption across the EU. 

It is important that farmers are educated in the wider benefits of conservation 

agriculture, not just in terms of crop productivity but in the control of soil and 

water loss, and the improvement to local biodiversity and surrounding 

environment. Legislation is already in place giving farmers incentives for 

following best management practices. The common agricultural policy (CAP) 

was the primary subsidy programme running in the EU which was originally 

based on production. Since the 1990s CAP has undergone multiple reforms. It is 

now based on single payment schemes to farmers who are encouraged to employ 

more environmentally based practices (EUROPA 2003). Member states employ 

their own agricultural schemes. In England, DEFRA introduced in 2005 the new 

environmental stewardship schemes, designed to address the conservation of 

wildlife, the protection of historic features and natural resources, and promote 

public awareness (DEFRA 2006). There are three types of environmental 

stewardships schemes. Entry level scheme (ELS) open to all farms, organic ELS 

specific to organic farms, and higher level stewardship (HLS) which targets 

priority areas requiring more complicated management regimes. Both ELS and 

organic ELS address the need to management soil and nutrients (DEFRA 2006). 

The adoption of conservation tillage practices could be used as a management 

tool in the control of nutrients and soil loss. 

1.2.3 Soil and water protection in England and Wales 

In the past farmers in England and Wales considered soil loss through water 

erosion to be relatively unimportant, unless crop productivity was affected (EA 

2004). Across England and Wales 17% of soils show signs of erosion, and 

annually 2.2 million tonnes of arable topsoil is lost (EA 2004a). Although crop 

productivity decline can be masked by the addition of fertilisers for example, the 

off-site impacts of this erosion are immense. Soil erosion within the UK is 

http://www.defra.gov.uk/erdp/schemes/es/default.htm
http://www.defra.gov.uk/erdp/schemes/es/default.htm
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reported to be mainly associated with water rather than wind erosion (Robinson 

& Blackman 1989), and is concentrated in areas with low clay content. Other 

processes of soil loss such as tillage erosion and soil co-extracted on root crops 

have been reported by Owens et al. (2002, 2006). It is reported by the 

Environment Agency (EA 2004) that the annual costs of remedying soil related 

problems are extremely high. In 1995 sediment clean up within urban drainage 

systems cost between £50 and £60 million, and £20 million within rivers. The 

remediation costs of agricultural related environmental impacts from soil erosion 

were in 2000, estimated to be £90 million (EA 2004). Increasingly in the UK, 

soil erosion is having a more direct impact on society through devastating floods 

causing considerable damage to people’s homes and livelihoods. In 2004, for 

example, the area of Boscastle in Cornwall, received over 1,400 million litres of 

rain fell in two hours across a 23km2 area (NCDC 2006) causing extensive 

damage.  

Adoption of better land management practices is aimed at minimising risk from 

erosion. An increasing number of projects have been set up to study this on 

working farms. The Parrett Catchment Project is one such study, where the 

impact of soil management on the water environment is investigated. This project 

also aims to disseminate its findings directly to farmers through demonstration 

days and trials (SCC 2006). The Allerton Project also aims to demonstrate to 

farmers how to integrate conservation land management and profitable farming 

(Leake 2005).   

Despite these on-going projects, the EA (2004) states that across England and 

Wales there is still a distinct lack of good quality information on soil protection, 

restricting the creation and implementation of effective soil protection 

programmes and policies. Clearly further research is required in England and 

Wales on current soil susceptibility to erosion, and the effects of different land 

management practice. 
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1.2.4 Processes of soil erosion 

Erosion is a natural process, often referred to as geological erosion. Human 

intervention and manipulation of soil has lead to an increased amount of erosion, 

known as accelerated erosion. Soil is made up of structural units containing 

planes of weakness. When stress is applied, breakdown occurs along these 

planes, producing soil fragments more stable than the applied stress. As more 

energy is applied, fragmentation increases. The rate of this degradation is linked 

to the structural stability between aggregates (Diaz-Zorita et al. 2002). In its 

simplest form erosion by water is the transformation of soil into sediment (Brady 

& Weil 2002) and occurs by a three step process; detachment, transport and 

finally deposition. 

There are multiple ways in which detachment takes place, usually following the 

breakdown of soil aggregates. Raindrops dominate the process of surface 

aggregate breakdown and are thus the primary detaching agent. As a raindrop 

hits the surface of an exposed soil aggregate, the mechanical energy from the 

water droplet dissipates, causing the aggregate to deform or shear. Small particles 

are detached from the main aggregate body and are projected vertically and 

horizontally from the point of impact. The severity of this action is dependant 

upon multiple factors including the energy or erosivity of the rainfall and the 

susceptibility or erodibility of the soil.  Detached soil particles are transported in 

the trajectory jets or ‘splash’ effect of the impacting raindrops, to distances as 

much as 0.7m vertically and 2m horizontally (Brady & Weil 2002), exacerbated 

by windy conditions.  

Once aggregates are broken down, detached soil particles are then moved via 

transporting agents; water based processes only are discussed here. There are two 

main transporting agents (Morgan 2005) - rain-splash (as described previously), 

which transports detached soil over a uniform area of infinite width, and overland 

flow. The latter initiates either a) when soils are saturated or near-saturated, and 

infiltration capacity is close to zero, or b) when soil infiltration rates are exceeded 
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by rainfall intensity, as may occur when surface seals or caps are present. A crust 

or seal is defined as an impermeable layer developed by the reconstruction of 

surface aggregates. Seal formation is driven by rainfall or irrigation, whereas 

crusts are the results of soil drying. Crust and seal formation are affected by: 

I soil properties in particular clay and organic matter content (Morgan 2005) 

and aggregate stability (Robinson & Phillips 2001); 

II surface conditions such as surface roughness and cover (Linden et al. 

1988); and 

III the properties of rainfall itself (Brady & Weil 2002).  

 
Plate 1.2-2 Rill erosion in Somerset. Source www.sowap.org  

If rainfall input is greater than the infiltration rate ponds will form in the soil 

surface depressions. The depth and size of surface ponds is dependent on the soil 

properties and surface conditions present at the time. If the sides of a pond break 

or if multiple ponds connect, then surface water flows down slope as surface 

runoff (also termed overland flow). This movement of water can be as sheet or 

inter-rill flow; a smooth thin single layer of water that carries rainsplash-detached 
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particles down slope. Inter-rill flow is unlikely to detach soil particles, due to low 

hydraulic energy available for detachment by flow (Morgan 2005). Also, it is rare 

that inter-rill flow remains as a continuous water layer, due to the presence of 

surface irregularities such as soil microtopography, stones, crop residues and 

vegetation. Such surface irregularities concentrate the flow into channels of 

various sizes, forming other transporting agents, including micro-rills, rills and 

gullies. The velocity of such concentrated flow is relatively higher than for inter-

rill flow, so not only are eroded particles transported effectively, but detachment 

of soil also occurs (Brady & Weil 2002). Rills, which by definition can be 

removed during ploughing or by subsequent rainfall events cut into the soil mass 

(Plate 1.2-2) and may start to retreat up slope via the process of undercutting 

(Morgan 2005). As this process becomes accelerated, larger erosion features such 

as gullies are created. Large quantities of sediment are moved within gullies and 

once formed, they are extremely difficult to eradicate, as, by definition, they are 

usually deeper than the depth of ploughing operations.  

Erosion

Transport

Deposition

0.001 0.01 0.1 1.0 10

Grain Size Diameter (mm)

1.0

10

100

Fl
ui

d 
Ve

lo
cit

y (
m

/se
c)

0.1

Clay Silt Sand Gravel

Erosion

Transport

Deposition

0.001 0.01 0.1 1.0 10

Grain Size Diameter (mm)

1.0

10

100

Fl
ui

d 
Ve

lo
cit

y (
m

/se
c)

0.1

Clay Silt Sand Gravel

 
Figure 1.2-2 Energy requirements of soil erosion, transport and deposition in 
water (based on Hjulström's Curve) 
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The transportation of aggregates or soil particles requires energy. If energy levels 

fall below this threshold point soil particles are deposited. The deposition rates of 

soil are related to the size and mass of soil particles. This can be summarised in 

Figure 1.2-2 based on Hjulström’s curve (originally based on channel velocity 

associated with rivers), showing the energy levels required for the processes of 

erosion, transport and deposition of particles in water (Hjulström 1935). Similar 

findings have been found by Poesen (1992) of the relationship between particle 

size and the kinetic energy required for detachment. 

The breakdown, detachment, transport and deposition of soil are influenced by 

soil properties and soil surface characteristics present at the time. These are in 

turn affected by soil management. Soil management practices have been shown 

to be an important influence in the development of gullies and other erosion 

features (Oygarden 2003). 

1.2.5 Factors affecting erosion 

Any investigation of soil erosion and soil conservation must consider the factors 

affecting erosion, to aid design and development of soil erosion control practices. 

It should be understood that not all factors can be changed by human intervention 

or management. 

1.2.5.1 Rainfall  

All other factors being equal, the intensity and volume of rainfall received at a 

soil surface is closely associated with the amount of runoff and soil erosion 

generated there. Seasonal fluctuations in rainfall and the condition of the soil will 

affect these links. The impact of a low intensity storm over a long duration may 

have more or less of an impact than a high intensity storm over a short period of 

time. The effect of seasonal changes in rainfall is currently a topic of discussion 

in relation to global climate change. Areas which previously experienced 

multiple low intensity storms may start to get one or two intense storms per year 

and vice versa. The condition of the soil when it rains also affects erosion rates. 
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Morgan (2005b) showed that work by Fournier (1972) measured a storm of 

19.3mm which fell on dry ground resulting in only 25% runoff, the remaining 

water infiltrating the soil. The following day 13.7mm of rainfall fell, which lead 

to a loss of 66% runoff and a trebling of soil lost. Rainfall erosivity is used as an 

index of the ability of rainfall to cause erosion, taking into consideration the total 

volume and intensity of rainfall as well as the kinetic energy and drop size of the 

rain itself. An increase in rainfall erosivity is likely to generate higher erosion 

rates. It should be noted that not all rainfall is erosive. Hudson (1965) estimated 

that only rainfall intensities of over 25 mm h-1 were erosive, which represents 

only 5%, of British rainfall for example. However, Morgan (1980) suggested that 

for the UK rainfall intensities of 10 mm h-1 and above are erosive, and Reed 

(1979) stipulated that rainfall intensities as low as 1mm h-1 would be sufficient to 

initiate erosion as long as a total of 10mm of rain fell during that storm.  

In terms of controlling erosion, little can be done with regard to rainfall received 

at a site. However, the fate of that rainfall (as infiltration or runoff) is strongly 

affected by the adopted management practices at a site. 

1.2.5.2 Soil Properties 

Soil erodibility is the susceptibility of soil to be detached and transported (Brady 

& Weil 2002). Soil erodibility is affected by a variety of soil properties, the most 

important of which have been stated as being the structural stability and 

infiltration capacity (Brady & Weil 2002). A soil with a higher infiltration rate is 

at less risk of surface ponding and eventual overland flow. However, the 

presence of surface ponds reduces the energy of impacting raindrops (Palmer 

1964) and reduces soil detachment. Soil stability is also important, affecting the 

resistance of aggregates to breakdown via raindrop impact. Both infiltration rates 

and soil stability change with soil properties. In this review the key properties are 

discussed below. What is of particular relevance to the present study is to 

ascertain whether it is feasible to modify any of these properties by management 

practices. 
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1.2.5.2.1 Texture 

 Soil comprises of three main fractions, sand, silt and clay. The proportions of 

each within a soil affect water retention, pore space, permeability, soil strength 

and adsorption capacity of nutrients and carbon (Charman & Murphy 2000). Soil 

texture was identified by Wischmeier & Smith (1978) as an important inherent 

soil property affecting soil erodibility, and as such was incorporated into the K 

factor of the Universal Soil Loss Equation. Clay has been shown to have a 

positive correlation to the stability of soil aggregates (Holland 2004; Le 

Bissonnais et al. 2002; Levy & Mamedov 2002) due to the strong cohesive forces 

between clay particles. It has been stated by the European Environment Agency 

that soils with low clay contents are at greater risk of soil loss during erosion 

(Gobin et al. 2004). Increased clay content within soil has also been linked to 

greater risk of surface sealing and capping (Ferry & Olsen 1975). Clay particles 

have a high specific surface area which makes them highly adsorptive, meaning 

that soils with increased clay content retain higher concentrations of nutrients and 

carbon. Consequently when this fraction is eroded, there is preferential loss of 

nutrients and carbon on-site, and enrichment of these properties in water and 

sediment off-site. 

1.2.5.2.2  Organic Matter & Carbon 

Soil organic matter (SOM) and soil organic carbon (SOC) are interrelated. This is 

unsurprising as organic matter is the result of the decay of carbon based 

biologically derived material. Organic matter is said to be one of the most 

important soil factors (Holland 2004) affecting soil structure and stability and a 

useful indicator of soil sustainability (King et al. 2005). Research has shown 

erosion is likely to initiate when SOC levels fall below 2% (Greenland et al. 

1975; Evans 1996). Wischmeier & Smith (1978) identified organic matter as an 

important inherent soil property affecting soil erodibility, and as such was 

incorporated into the K factor of the Universal Soil Loss Equation. Aggregate 

stability has been shown to be strongly linked to the organic matter content 
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within the soil (Robinson & Phillips 2001; Le Bissonnais et al. 2002), affecting 

other soil characteristics such as seal and crust formation, degree of cohesion 

between soil particles; and reduction of bulk density. The presence of SOM also 

influences soil biological activity and nutrient balances (Holland 2004; Fullen & 

Catt 2004). Organic matter and carbon content have also been linked to the 

wettability of soil aggregates. An organic matter film around an aggregate makes 

it more water repellent (hydrophobic), thereby lowering wettability (Ellerbrock et 

al. 2005), and reducing erodibility. Eynard et al. (2006) believes that SOC is the 

most effective tool at regulating soil wettability.   
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Figure 1.2-3 Reproduced from Tisdall & Oades 1980; as cited in Charman & 
Murphy 2000 

1.2.5.2.3 Moisture Content 

The moisture content of soil aggregates can affect the severity of aggregate 

breakdown from rainfall. As rain falls onto dry aggregates, water is forced into 

air filled pores. If air becomes trapped within the pores, it is released suddenly 

under pressure, forcing soil particles apart – a process known as slaking. An 

increase in moisture reduces this explosive response. However, as soil moisture 

decreases, cohesion between particles increases and inorganic cements (e.g. 

carbonates) are concentrated, drawing together clay platelets (Kemper & Rasenau 
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1984; Kemper & Rasenau 1986).   Infiltration rates are also affected by soil 

moisture, as shown above. Water infiltrates through the soil matrix, driven by 

gravitational forces and the suction from dry aggregates (Charman & Murphy 

2000). The effect of the latter will decline if moisture content increases within the 

soil matrix. Previous research has shown that soil infiltration rates were greater in 

wet soils (not saturated) compared to dry soils (Le Bissonnais & Singer 1992). 

Soil moisture content also affects the strength of surface seals (Bennett et al. 

1964; Callebaut et al. 1985) which will also affect infiltration and the potential 

for runoff generation. The links between moisture content and erosion processes 

is reflected in the fact that moisture content is used as an indicator of soil 

erodibility in the Morgan-Morgan-Finney model (Morgan 1995). 

1.2.5.2.4 Bulk density 

A soil with a high bulk density indicates that the soil matrix has been 

consolidated with few pore spaces. As bulk density increases, infiltration rates 

decrease and drainage is impeded. If water cannot infiltrate through the soil, it 

will collect on the soil surface and will contribute to overland flow. Therefore, 

the risk of erosion increases as the bulk density increases. The links between bulk 

density and susceptibility to erosion are reflected in the Morgan-Morgan-Finney 

model (Morgan 1995). 

1.2.5.2.5 Soil Biota 

One soil property affecting erodibility that is often overlooked is the role of soil 

biota. This is rarely considered explicitly in soil erosion models. With the 

increase in research in this area, it is becoming more apparent that the soil biota 

have an important affect on soil structure, aggregation and therefore erosion 

(Jastrow & Miller 1991; Kandeler & Murer 1993; Kiem & Kandeler 1997). 

Biological processes play a great role in the aggregation of macro (0.3mm) soil 

particles (Brady & Weil 2002; Rowell 1994). Larger aggregate formation or 

formation in sandy soils (with little clay content) relies substantially on 



  

- 20 - 

biological processes. Primary soil particles are bound together to form aggregates 

through biotic stabilising agents (Brady & Weil 2002; Stuttard 1985). Worms 

(especially earthworms), certain arthropods (e.g. termites) and plant roots force 

soil particles into aggregates through the action of burrowing. Earthworm 

activities have been found to be important in the formation of macro- and micro-

aggregates (Six et al. 2004) and the increase in soil aggregate stability (Pulleman 

et al. 2005). Plant roots (especially root hairs) and fungal hyphae bind soil 

particles together through the formation of sticky networks of organic 

compounds. This process aids the formation of macro-aggregates. The 

production of organic glues from plant roots, bacteria and other microbes bind 

soil particles together; this production of organic glues are prevalent where 

organic matter accumulation occurs. Water resistant glues are important in the 

long term stability of aggregates (Brady & Weil 2002). Work by Kiem & 

Kandeler (1997) showed that the resistance of aggregates to slaking increased 

with microbial biomass. This work confirmed similar findings by Kandeler & 

Murer (1993). The importance of this relationship was found to decline as soil 

clay content increased (Kiem & Kandeler 1997). Aggregate stability is intimately 

linked to the generation of soil erosion and runoff (section 1.2.5.2.6).  

1.2.5.2.6 Aggregate stability 

Surface soil aggregates are formed through the aggregation or arrangement of 

primary soil particles into structural units of different sizes. These sub-units are 

bound together through environmental, abiotic (physical-chemical) and biotic 

processes (Stuttard 1985). Environmental processes drive the formation of micro-

aggregates, defined by Brady & Weil (2002) as being <0.3mm driven by 

temperature and water cycles (i.e. freeze/thaw and drying/wetting actions). This 

is particularly relevant on smectite dominated soil e.g. vertisols (Brady & Weil 

2002; Stuttard 1985). Abiotic processes also drive micro-aggregation dominating 

aggregates <1mm (Stuttard 1985). Abiotic processes involve aggregation through 

stabilising agents including cohesive force between clay and water, flocculation 
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of clay platelets into clay domains, and inorganic cements (calcium and iron or 

aluminium sesquioxides). The final process (biotic) involves actions from roots 

and micro-organisms in the generation of aggregates (Brady & Weil 2002; 

Rowell 1994; Jastro & Miller 1991). 

Soil erosion processes are influenced by aggregate stability, the most important 

of which is the resistance of aggregates to rainfall impact (Legout et al. 2005). 

Stable aggregates resist breakdown, and thus are less prone to the associated 

processes of surface crust and seal formation, reduction in infiltrate rates and the 

generation of runoff and sediment (Le Bissonnais & Arrouays 1997; Tisdall & 

Oades 1982). Aggregate stability is increasingly being considered as an 

important indicator of soil erodibility due to the linkages with soil properties (Six 

et al. 2000; Bryan 1968). Bryan (1968) found the stability of aggregates to be the 

most important soil property affecting soil susceptibility to erosion. 

Agriculture also plays an important role in the breakdown of aggregates via 

mechanical manipulation by modifying the soil properties mentioned above, and 

altering the aggregate size distribution. It was found that smaller aggregates were 

more susceptible to wetting and as a result led to increased soil losses (Teixeira 

& Misra 1997). However, work by Abu-Hamdeh et al. (2006) found a positive 

relationship between clod size and splash erosion due to a reduction in tensile 

strength with clod size increase. It should be noted that these studies used 

different ranges of aggregate sizes and as shown by Poesen (1992, Figure 1.2-4) 

and Hjulström (1935, Figure 1.2-2) would have affected the required energies in 

detaching and transporting soil particles. The work by Hjulström (1935) was 

based on stream flow velocities but is still valid in highlighting the relationship 

between energy and particle size detachment. Both Poesen (1992) and Hjulström 

(1935) show that very small and coarse particles results in the greatest resistance 

to detachment, due to strong adhesive or chemical bonding in small particles and 

the affect of increased weight of coarser particles (Morgan 2005). 
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Figure 1.2-4 Relationship between detachment energy and particle size. Hatched 
area representing range of experimental values Reproduced from Morgan (2005) 
on work by Poesen (1992). 

1.2.5.3 Soil Surface Characteristics 

In this review the key surface properties affecting soil erosion and runoff 

generation will be discussed. These include the surface cover and roughness, 

both of which can be modified by soil management practice.  

1.2.5.3.1 Surface Cover 

Surface cover may include the main crop itself, a sown cover crop, weeds, crop 

residues, stones or an erosion control blanket. The latter is outside the context of 

this research and shall not be discussed. 

The presence of a surface cover physically protects the soil from direct rainfall 

impact, minimising soil detachment (Morgan 2005). The greater the percentage 

of soil covered the smaller the area exposed to rainfall, thereby reducing the 

susceptibility of soil to detachment and associated formation of a crust, seal or 

pond (Robinson & Philips 2001). The application of residues is a common way 
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of increasing the surface cover, and this is a distinctive characteristic of 

conservation agriculture as opposed to conventional tillage practices. Residue 

application is associated with an increase of organic matter (Robinson & 

Blackman 1989) and related to this, aggregate stability.  

The effect of surface cover on soil erosion processes was well documented in 

work carried out by Hudson (1957) in Zimbabwe where experimental plots were 

compared. The treatments consisted of bare plots and plots with an artificial 

covering (gauze). It was found that the presence of surface cover reduced soil 

loss by up to 100 times to that generated from bare plots (Hudson 1995). Other 

research has also found reductions in erosion rates from soils with surface cover 

compared to bare plots (Laflen & Colvin 1981; Ngatunga et al. 1984; Isensee & 

Sadeghi 1999). The impact of a surface cover is clearly presented in Table 1.2-2, 

taken from a report by the USDA on the effect of conservation tillage on water 

quality. 

Table 1.2-2 Taken from (Hill & Mannering 1995): effects of surface residue cover 
on runoff and soil loss 

Residue Cover % Runoff (% of rain) Sediment in 
Runoff (% of 

runoff) 

Soil Loss 
(tons/acre) 

0 45 26 12.4 

41 40 14 3.2 

71 26 12 1.4 

93 0.5 7 0.3 

The effects of surface cover on protecting the soil is changeable as residues are 

broken down overtime and vegetation growth alters crop height, stem length, leaf 

shape area and rigidity (Morgan & Rickson 1988). The presence of most surface 

covers are likely to increase infiltration into the soil and lead to a reduction in 

available water for overland flow (Charman & Murphy 2000). The presence of 

surface stones has also been linked to a reduction in surface runoff and sediment 
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concentration (Mandal et al. 2005; Poesen & Lavee 1994; Poesen et al. 1990; 

Cerdá 2001). 

1.2.5.3.2 Surface Roughness 

Surface roughness, as affected by surface cover (see above) and/or soil 

management practices can have a significant impact on soil erosion and runoff, 

by altering the direction and velocity of runoff flow (Takken et al. 2001). Surface 

roughness is a major controlling factor in the generation of overland flow 

(Darboux et al. 2001); however, this effect is reduced after every rainfall event 

(Mwendnera & Feyen 1994). A soil with a rough surface will have an initially 

higher infiltration rate compared to a smooth surface, due to presence of soil 

surface depressions. These fill during periods of rain when infiltration rates are 

lower than rainfall input. Water then collects at the surface and retained in these 

surface depressions. Once the storage capacity of these depressions is reached or 

the walls are breached, runoff is initiated. Overland flow occurs as other 

overfilled depressions connect (Darboux et al 2001). A rough surface also 

reduces the risk of soil loss by increasing the hydraulic resistance, disrupting and 

dissipating the energy within surface runoff (Foster 1982; Einstein & Barbarossa 

1951; Abrahams & Parsons 1991). This reduction in available energy within the 

water flow reduces the risk of soil detachment and transport. The presence of 

depressions also allows sedimentation of soil entrained within overland flow. 

These effects can be represented by parameters such as the Manning’s n 

coefficient, which shows the degree, to which surface roughness (imparted by 

vegetation and /or the micro topography) reduces the velocity of flow, and thus 

soil detachment and transport (see Figure 1.2-2).  

1.2.5.4  Site Topography 

Slope length and gradient affect erosion rates. As the effective catchment area of 

rainfall increases there is a positive relationship between slope length and 

overland flow volume. As slope length increases so too does the velocity of 
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runoff as gravity accelerates momentum. However, the relationship between 

slope length and soil loss is not linear, partly due to the greater influence of 

surface irregularities on flow characteristics, and increased opportunity for 

infiltration and deposition to take place on longer slopes. Many workers have 

tried to find this relationship (Morgan 2005). If rills are the dominant erosion 

process operating on a slope, then slope length has been stated as having a 

greater influence on runoff generation than slope gradient (Brady & Weil 2002). 

Similarly with slope gradient, the general theory is that erosion rates increase on 

steeper slopes due to higher energy of overland flow (Potential energy = mass x 

gravity x height). Also, the distance soil particles are transported during rain 

splash erosion is greater as the slope gradient increases, resulting in a greater net 

movement of soil down slope. 

1.2.5.5 Soil management 

 Soil management practices can modify the factors affecting erosion as detailed 

above. Agriculture has a direct impact on the erodibility of soil as it alters the 

organic and chemical content, aggregate stability, size distribution and 

infiltration capacity (Morgan 2005). Traditional or conventional forms of 

agriculture involve primary and secondary soil cultivation. Soil is tilled and 

inverted, large clods of earth are broken up to produce an even seed bed for plant 

growth. This action inevitably alters the aggregate size distribution affecting soil 

erosion, transport and deposition as shown by Hjulstrom’s curve (Figure 1.2-2) 

and work by Poesen (1992, Figure 1.2-4). Aggregate stability is altered through 

management and through the alteration of other soil and surface characteristics 

such as organic matter, the soil biota (i.e. earthworm populations, microbial 

community structure and mass), surface cover and roughness. Organic matter and 

the organic glues and gums produced from soil biota act as binding agents 

increasing aggregate stability. This stability is lost during tillage as the soil is 

inverted burying organic matter and soil surface biota. Soil inversion also results 

in a loss of surface cohesive strength (Brady & Weil 2002). Tillage can lead to 
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compaction problems (Holland 2004) which results in increased bulk densities 

and higher runoff volumes. Compaction can occur with conventional and 

conservation practices but can be mitigated by sub-soiling (Larink et al. 2001). 

Mwendera & Feyen (1994) showed that bulk density increased after rainfall but 

that this effect was the least on untilled treatments compared to harrowing 

regimes.  

Agriculture also modifies soil surface characteristics, through tillage, 

applications of residues and sowing of different crops. An increase in tillage can 

reduce the surface roughness which has been shown to lead to higher erosion 

rates. Work by Mwendera & Feyen (1994) showed this related to four different 

tillage treatments, ploughed, harrowed and rolled. Despite the surface roughness 

being reduced on all treatments after rainfall, it was found that a ploughed soil 

would maintain a higher water storage capacity when compared to a rolled 

surface because the smoother surface would generate more runoff and soil loss. 

A part of land management is the control of ground cover in terms of type and 

application rates. Ground cover is important to erosion rates (as discussed 

previously 0). In the main the application of residues are associated with a 

decline in runoff and sediment generation (Laflen & Colvin 1981). It has been 

reported by Wischmeier & Smith (1978) that the alteration of the cover and 

management factor, or C factor, as described in the USLE is a common way of 

farmers to move towards conservation practices.  

These effects of agricultural practice on erosion rates have been shown by many 

workers. Ngatunga et al. (1984) investigated several soil management treatments, 

two of which were mulch tillage (around 30% cover) and one ploughing. It was 

shown that for the steepest slope tested (22%), the annual soil loss and runoff 

coefficients (i.e. the ratio between rainfall received to runoff) were 23.5 tonnes 

ha-1 and 5.1% for a ploughed soil, and 0.18 tonnes ha-1 and 0.5% for the mulched 

soil. 
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1.2.6 Erosion monitoring and assessment  

Monitoring and assessment of erosion processes and the factors affecting these 

processes can be done through 1) direct measurement of erosion though field 

and/or laboratory work; or 2) the use of models which combine multiple soil and 

site characteristics to simulate erosion processes and / or identify erosion risk. 

1.2.6.1 Direct measurements 

Direct measurements of soil erosion can be done in a variety of ways including 

surveying and physical collection. Simple erosion surveys may concentrate on a 

pre-defined area of land, in the field or on aerial photographs of a suitable scale 

(e.g. 1:10,000). Here, point locations are systematically surveyed for the 

presence/absence of erosion features (e.g. micro-rills, rills, gullies, sheet erosion 

and deposition fans). The spatial distribution and density of the erosion features 

is taken as an indicator of erosion severity in the area. A more detailed, 

quantified approach would measure the dimensions of these features, in order to 

calculate the amount of soil lost from that area. In addition, present erosion 

activity can be addressed including stages of development (e.g. active, dormant, 

and senescent). These in-depth surveys allow identification of spatial variations 

in erosion severity across a larger area. This technique can also be used to 

identify areas likely to be affected in the future, so that soil conservation 

management can be employed at these locations. However, this method does 

raise some problems. Areas that have already suffered erosion may be too 

degraded for soil conservation to be cost-effective. Also, socio-economic factors 

are rarely included in the mapping because of the complexity, yet are vital for 

soil conservation.  

Direct measurements of soil erosion can be done in the field or in the laboratory. 

Field measurements can be achieved by setting up a collection system into which 

eroded sediment and runoff from a defined area of land can discharge. Large 

scale (catchment or sub-catchment) collections utilise natural drainage lines. 
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Field scale experiments demarcate an area for study by the use of artificial 

boundaries or natural borders i.e. ditches, earth bunds or man-made material (e.g. 

metal sheeting). At a small scale erosion plots are still used and are termed 

micro-plots (Morgan 2005). At the larger scale (catchment to field) natural 

rainfall is mainly used while at the micro-plot scale, simulated rainfall systems 

are set up. In either case, the amount of rainfall is measured and the amount of 

runoff and/or soil loss is measured, giving a direct measurement of erosion for 

that particular area. Laboratory experiments are also carried out, using simulated 

rainfall to measure erosion or erodibility. Relatively undisturbed soil samples 

may be removed from the field and placed under a rainfall simulator and a 

variety of measurements can be taken, including surface runoff, sub-surface 

runoff, infiltration rates, and changes in soil properties. Artificially packed soil 

with known physical properties i.e. soil texture, bulk density, nutrient 

composition and vegetation type, are used to investigate the role of certain soil 

properties or surface characteristics on soil erosion. Single soil aggregates can be 

tested to indicate their resistance to breakdown. Such tests include wet sieving, 

dropping single raindrops onto the aggregate or exposure of the aggregates to 

simulated rainfall. 

1.2.6.2 Factorial scoring, classification and erosion models 

Factorial scoring involves the identification of factors that affect soil erosion 

including rain erosivity, soil erodibility, slope of the land, land cover and the 

impact of human occupation of the area. Each factor is given a score from low to 

high risk at specific survey points across the area. The scores are totalled and 

areas of high risk can be identified. Although this method is fast, relatively 

simple and gives clear spatial differences, it is a subjective method and does not 

consider the interactions of the selected factors in terms of erosion processes 

operating. 

Soil erosion models are used to predict soil erosion risk or rates of erosion for a 

specified area. The inputs of such models can be modified to simulate erosion 
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risk or rates for pre-defined scenarios for example, changing climatic or land use 

conditions or varying land management practice. There are many erosion 

prediction models in existence but some notable ones include the Universal Soil 

Loss Equation (USLE), Water Erosion Prediction Project (WEPP; WEPP 2006), 

European Soil Erosion Model (EUROSEM) and the Morgan-Morgan-Finney 

model (MMF). All erosion models require input data which may include rainfall 

(erosivity, volume and, intensity), soil (erodibility, properties such as moisture 

content, bulk density, cohesion strength, depth and surface depression storage), 

slope steepness and length, cropping regimes, land management, and land cover 

(Morgan 1995). With any model it is important that it should be validated by 

measured results. One limitation of erosion prediction models is that the input 

factors are often represented as a single figure which does not take into account 

their inherent spatial variability. Validation of these models is limited, and there 

is still a great deal of doubt as to the accuracy of them. 

1.2.7 Present study 

Investigating soil erosion on agricultural fields is a challenging task due to the 

existence of natural variability within fields and between farming practices. 

Previous work has been carried out at a variety of spatial scales from whole 

catchments down to individual aggregates, but very few studies encompass more 

than one or two spatial scales within the same study. This may be due to the 

absence of a standard methodological approach to tackle multiple spatial scale 

investigations. There are also financial implications associated with larger scale 

collection of data through direct measuring. 

The present study is unique in that it considers three spatial scales concurrently 

within the same project – at the field scale, the micro-plot scale and on individual 

aggregates. At the same time, unlike other erosion projects, the present study 

considers the effects of different soil management treatments at these three 

spatial scales simultaneously. This thesis will attempt to explain the results 

observed at each scale by considering the changes in soil properties and surface 
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characteristics which result from soil management practice applied. Finally, this 

study will test whether small scale assessments of soil susceptibility to erosion 

can be used to indicate field scale erosion. These areas of investigation have been 

specifically identified in Volume 6 of the Soil Thematic Strategy as being 

essential in future soil erosion research (EUROPA 2006b). 

1.2.8 Summation 

Soils are an important global resource, under threat from misuse and over-use. 

This is primarily because of over food production, due to population increase 

pressures leading to an increase in agriculture. Soil erosion is a costly worldwide 

problem resulting in the diffuse pollution of waterbodies, sedimentation of water 

courses, desertification (especially in arid and semi-arid areas) and loss of 

productive land. UK annual costs of soil erosion currently stand at an estimated 

£90 million (EA 2004; Morgan 2005). This has led countries world wide to adopt 

policies to aid in the protection of this vital resource. Europe adopted the Sixth 

Environment Action Programme in 2002, which will run until 2012 by which, 

time the European Commission will have prepared seven Thematic Strategies - 

one of which is solely concerned with the protection and conservation of soils. 

As part of this soil thematic strategy a framework directive was proposed. 

Contained in which, were principles allowing member states to utilise soil 

resources in a sustainable and protective manner (EUROPA 2006c) 

Agriculture has a direct impact on the soil environment, altering soil structure, 

organic matter, water content, nutrient composition and the soil biota. These 

changes in soil properties and soil surface characteristics affect losses of soil, 

water, nutrients and carbon through erosion. Traditional soil cultivation 

(conventional tillage) inverts the soil using tillage practices such as mouldboard 

ploughing, and the creation of fine seed beds for crop drilling, often resulting in 

soil erosion and runoff. The use of conventional agricultural practices such as 

continuous tillage, crop residue incorporation, burning, and intensive preparation 

of the seed bed have lead to a decline in soil fertility, loss of available water to 
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the crop and a reduction in biodiversity (Benites & Vaneph 2001). In extreme 

cases, desertification can occur as happened in the mid West of the United States, 

with the creation of the dustbowl, starting a drive to adopt conservation 

agriculture. Other countries also affected by desertification are Brazil and 

Australia (Benites & Vaneph 2001). This has led to a recent shift towards 

practicing conservation tillage, which aims to minimise soil disturbance, and thus 

reduce erosion. Conservation based agricultural practices aim to minimise soil 

erosion, and where possible maintain or improve soil properties e.g. texture, 

organic matter, moisture content, bulk density and the soil biota. Conservation 

agriculture aims to improve soils surface conditions by increasing surface cover 

and surface roughness. 

Since 1990, in the US, the adoption of no-till conservation systems has increased 

by over 25% (Hill & Mannering 1995) and is increasing each year. A case study 

in Worcestershire on heavy clay loam showed a move from plough and 

power/harrow-drill to a reduced cultivation/direct drilling. The 320ha farm 

showed soil structure improvements, significant worm number increase and 

improvement in soil fertility. For a farmer this is positive, but there are financial 

implications in adopting conservation agriculture, as new equipment is required, 

new techniques to be learned and there is a fear that crop productivity would be 

reduced. This case study showed that as well as soil improvements overall crop 

establishment cost was reduced by over 45% (SMI 2005a). 

A further concern of farmers implementing conservation agriculture is the risk of 

pest resistance and damage to crops. Weed and pest problems were controlled in 

conventional agriculture by mechanical means; breaking the soil and inverting it, 

killing pests, breaking weed roots and burying weed seeds. As conservation 

agriculture minimises tillage practices, farmers were concerned about having to 

apply increased amounts of herbicides at additional costs. However, this is not 

always the case, as a study in Wiltshire showed that a move towards reduced 

cultivation can still control herbicide resistant black grass and slugs. This study 



  

- 32 - 

found that ploughing had not controlled black grass but increased the problem by 

rotating the seeds annually. The use of reduced cultivation improved crop 

emergence and slug activity. As with the previous case study there was an 

unexpectedly low crop establishment cost (SMI 2005b). This could be set against 

any costs incurred for additional herbicide applications, if required.  

Any move towards wider adoption of conservation regimes needs to be supported 

by fundamental research as to the effectiveness of these practices on processes 

such as soil erosion and erodibility. This can be done through a variety of ways 

including direct measurement or empirical or physical based models. The present 

study uses direct measurements to assess the impact of conservation and 

conventional practices on soil erosion and erodibility at a variety of spatial scales 

in relation to a variety of soil properties and soil surface characteristics. 

1.3 Aim and Objectives  

1.3.1 Aim 

The aim of this thesis is to investigate the impact of conventional and 

conservation soil management practices on runoff, soil, nutrient and carbon 

losses, aggregate stability, inherent soil properties and surface characteristics 

across different spatial scales, at two sites in the UK. 

1.3.2 Objectives 

The following objectives were set to address research gaps as identified in the 

literature review. 

I To assess whether observed runoff volume and soil loss from a conventional 

soil management treatment differed from conservation based practices. This 

assessment will be made at a field and a micro-plot scale, and explanation of 

results will be made with regard to relevant environmental variables. 
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II To analyse the losses of nutrients and carbon associated with surface runoff 

and eroded sediment at the field scale, identifying and explaining any 

differences that may exist between conventional and conservation based soil 

management. 

III To identify if differences in soil erodibility exist between conventional and 

conservation practices by testing the stability of surface aggregates obtained 

from each treatment, using three different methodologies. The results will be 

evaluated critically to assess if the technique employed affects the results 

obtained. 

IV To evaluate whether field scale erosion losses can be extrapolated from the 

micro-plot scale, and whether relative treatment rank in terms of soil loss is 

consistent for all 3 spatial scales (field, micro-plot and soil aggregate).  

1.4 Thesis structure 

The proceeding chapters will address the following:  

Chapter 2 introduces the methodologies employed to meet the four research 

objectives. This chapter includes site locations and layouts, soil management 

treatment descriptions and an overview of the methods used at each spatial scale. 

Chapter 3 presents the research carried out at the field plot scale, measuring 

runoff, sediment, nutrient and carbon losses. The outcome of this chapter 

addresses the questions set out in objectives I and II. 

Chapter 4 presents the background and results from the micro-plot scale where 

runoff volume and soil loss were measured and percentages of surface seals and 

ponds were also quantified. The results of this chapter form part of objective I.  

Chapter 5 addresses the small scale assessment of soil erodibility through 

quantification of aggregate stability. The background and specific details of the 
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methods involved in each technique are presented. The results of this chapter 

refer to objective III. 

Chapter 6 focuses on objective IV, in the integration of results from each spatial 

scale (using the results presented in chapters 3-5).  

Finally, Chapter 7 presents the conclusions from this research project, reflecting 

the overall findings from each of the previous chapters. The limitations and 

implications of this project are presented, as well as future research directions. 

The findings from the present research are put into context with regard to soil 

erosion research, policy drivers and the farming community. 
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2 Methodology 

In order to meet the previously defined aims and objectives of this research, the 

following methodology was employed. 

2.1 Experimental site design 

The site locations and soil management treatments were pre-determined by the 

pan-European demonstration project, SOWAP. The following section describes 

the location and layout of each site, and the treatments employed. 

2.1.1 Site location  

Two locations in the UK were chosen to 

undertake this study. The first site was situated in 

central England, on the Loddington estate in 

Leicestershire, spanning over 300 hectares of 

arable cropland owned and managed by the 

Allerton Research and Educational Trust1, 

established in 1992. The second site is in 

Somerset, in the south west of England. The farm 

is located at Tivington, managed by a local farmer 

and set within the Holnicote Estate covering over 

5,000 hectares of the Exmoor National Park. The 

locations of these sites in relation to the rest of the 

UK can be found in Figure 2.1-1. 

At Loddington, the experimental site is located on Upper Pond Field (south), 

which is approximately 8.5 hectares in size (Plate 2.1-1). The field elevation is 

between 135 and 140 metres. The grid reference of the field is SK7901. The field 

has a mean slope of 3.5%, measured using a clinometer. The experimental site at 
                                                 
1 More information can be found at their website http://www.allertontrust.org.uk 

Loddington

Tivington

N

Loddington

Tivington

Loddington
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Figure 2.1-1 UK site location 
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Tivington is located on Pit Field, which is around 3.7 hectares (Plate 2.1-2). The 

field elevation is between 90 and 100 metres. The grid reference is SS9344. The 

field has a mean slope of 7% as measured by a clinometer. Aerial photographs of 

both site locations can be found in Figure 2.1-2. 

 
Plate 2.1-1 Loddington field site 

 
Plate 2.1-2 Tivington field site 

  

Figure 2.1-2 Aerial photographs of Loddington (left) and Tivington (right) field sites 
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Baseline soil samples were taken before the experimental site was constructed or 

treatments applied; the baseline results are presented in Table 2.1-1. The soil at 

Loddington is part of the Hanslope and Denchworth clay series, and a soil profile 

can be found in Figure 2.1-3. Hanslope soils are calcareous pelosols developed in 

Chalky-Jurassic Boulder clay. The topsoil consists of slightly calcareous brown 

clay, slowly permeable but is seldom waterlogged. The subsoil is chalky and 

calcareous, slightly mottled, which increases with depth. It is naturally compact 

with a poor structure remaining wet over winter. This soil series is associated 

with the East England. Denchworth soils are pelo stagnogleys developed over 

Jurassic and Cretaceous clay. The topsoil consists of stoneless, mottled dark 

brown heavy clay with a greyish, stoneless clay subsoil. The soil at Tivington is 

part of the Worcester series, a clayey soil, reddish colour with moderate 

permeability and free to imperfect drainage with a minimal risk of erosion by 

water (Hodgson 1997). This soil was formed over Triassic marl (calcium 

carbonate mudstone) and clay shale. The main differences between the sites in 

terms of soil texture is that the Loddington site (calssified as a clay soil) has over 

20% more clay than the soil from the Tivington site (classified as a sandy clay 

loam). However, the former contains over 4% more organic matter. 

Table 2.1-1 Baseline soil properties 

Soil Parameter Loddington Tivington 

Organic Matter (%) 5.2 0.84 

Sand 2.00-0.063mm (%) 32 53.8 

Silt 0.063-0.002mm (%) 23.5 26.6 

Clay <0.002mm (%) 44.5 19.6 

Textural Class Clay Sandy clay loam 
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Figure 2.1-3  Baseline soil profile at Loddington. Source www.sowap.org 

2.1.2 Soil Management Treatments 

Three soil management treatments were employed in this study - two 

conservation oriented treatments and one conventional treatment. The 

conservation treatments are based on non-inversion, conservation tillage; more 

specifically this tillage practice does not use a mouldboard plough. Instead 

conservation tillage uses many different techniques aimed at reducing 

mechanical manipulation of the soil ranging from heavy discs to zero-tillage. The 

two types of conservation treatments reflect the best management practice as 
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defined firstly by the parent project SOWAP (SOWAP or S), and secondly by the 

farmer at each site (Farmer’s Preference or F). Both conservation treatments 

applied surface residues. The conventional treatment (C) utilised the traditional 

mould board plough, inverting the soil, applying both primary and secondary 

cultivations. No surface residues were applied as part of this treatment. More 

detailed information on the specific operations involved for each treatment can 

be found for Loddington and Tivington in Table 2.1-2 and Table 2.1-3, 

respectively.  

Table 2.1-2 Loddington treatment descriptions 

Season & Dates Crop Treatment Tillage 

Pre-season one Mustard SOWAP Cover crop drilled to 2.5-4cm depth 
Conventional Plough to a depth of 15-20cm 

Cultipress to 5-10cm depth 
Drill to a depth of 2.5-4cm  
Roll 

SOWAP Simba Solo to 12.5-20cm depth 
Cultipress to 5-10cm depth 
Drill to 2.5-4cm depth 
Roll 

Season One 
October 2003 to  
September 2004 

Winter 
Wheat – 
Solstice 
variety 

Farmer’s 
Preference 

Simba Solo to 12.5-20cm depth 
Cultipress to 5-10cm depth 
Drill to 2.5-4cm depth 
Roll 

Conventional Soil left from previous harvest with 
complete surface cover 

SOWAP Simba Solo to 12.5-20cm depth 
Drilled Mustard-rye cover crop 2.5-
4cm depth 

Season Two 
September 2004 to 
March 2005 

 

Farmer’s 
Preference 

Simba Solo to 12.5-20cm depth 

Conventional Plough to a depth of 15-20cm 
Power harrow to 10-15cm depth 
Drill to a depth of 2.5-4cm  

SOWAP Drill to 2.5-4cm 

Season Three 
March 2005 to 
September 2005 

Spring 
Beans - 
Quatro 
variety 

Farmer’s 
Preference 

Power harrow to 10-15cm depth 
Drill 2.5-4cm depth 

Season Four 
October 2005 to 
July 2006 

Winter 
Wheat – 
Solstice 
variety 

Conventional Plough to a depth of 15-20cm 
Cultipress to 5-10cm depth 
Another Cultipress to 5-10cm depth 
Drill to a depth of 2.5-4cm  
Roll 
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  SOWAP Subsoil to a depth of 35-45cm depth 
Cultipress to 5-10cm depth 
Drill to 2.5-4cm 
Roll 

  Farmer’s 
Preference 

Subsoil to a depth of 35-45cm 
Cultipress to 5-10cm depth 
Drill to 2.5-4 cm depth 
Roll 

Table 2.1-3 Tivington treatment descriptions 

Season  Crop Treatment Tillage 

Conventional Plough to a depth of 15-18cm 
Vaderstad Carrier to a depth of 2.5cm 
Drill to a depth of 2cm  
Roll 

SOWAP Vaderstad Carrier to a depth of 2.5cm 
Drill to 0.5cm depth  
Roll 

One 
August 2003 to  
July 2004 

Winter 
Oil Seed 
Rape – 
variety 
Winner 

Farmer’s 
Preference 

Subsoil to a depth of 20-30cm 
Drill to 0.5cm depth  
Roll 

Conventional Plough to a depth of 15-20cm 
Vaderstad Carrier to 2.5-3.5cm depth 
Drill to a depth of 2cm  
Roll 

SOWAP Subsoil to a depth of 20cm 
Drill to a depth of 2cm  
Roll 

Two 
September 2004 to 
August 2005 

Winter 
Wheat – 
variety 
Claire 

Farmer’s 
Preference 

Vaderstad Carrier to 2.5-3.5cm 
Repeated again one month later 
Drill to 2cm depth 
Roll 

Conventional Plough to a depth of 15-18cm 
Subsoil to 25cm depth 
Drill to a depth of 7-8cm  

SOWAP Subsoil to a depth of 25cm  
Drill to 7-8cm 

Three 
November 2005 to 
August 2006 

Beans – 
variety 
Wizard 

Farmer’s 
Preference 

Subsoil to a depth of 25cm 
Drill to 7-8cm 

2.1.3 Site Layout 

At both sites, the three treatments were installed adjacent to one another; the 

conventional treatment being placed at one side, the SOWAP conservation 

treatment in the middle and the other conservation treatment, Farmer’s 
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Preference to the other side. For each treatment, land was set aside for two, 

duplicate erosion plots, the rainfall simulation trial plots, soil sampling and 

terrestrial ecology sampling (the latter being outside the scope of the present 

study). At Loddington, each erosion plot was 70 metres in length and 9 metres 

wide, encompassing an area of 630m2. Above each erosion plot an area of 90m2 

was set aside for soil sampling and the rainfall simulation plots. The layout of 

this area can be seen in Figure 2.1-4. The boundaries of the erosion plots (see 

Erosion Plot Layout Section 2.1.5) were removed before any field operations 

(e.g. harvesting) were undertaken and reinstalled after. 

 
Figure 2.1-4 Loddington site layout 

At Tivington the erosion plots were 55 metres in length and 10 metres wide, 

covering an area of 550m2. However, the first replicate for the conventional 

treatment (C1) varied in size for each season, depending on where the farmer 
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placed the tramlines and plot location relative to the field boundary (Figure 

2.1-5). During season 1 the plot area was 500m2, season 2 it was 455m2 and in 

season 3 it was 461.5m2. For each treatment there was a piece of land of equal 

size to the erosion plots located parallel with them. This land was left for the soil 

sampling and rainfall simulation plots. The layout of this area can be seen in 

Figure 2.1-5. The boundaries of the erosion plots (see Erosion Plot Layout 

Section 2.1.5) were removed before any field operations were undertaken and 

reinstalled after. 

 
Figure 2.1-5 Tivington site layout 

Weather stations at both sites recorded a variety of meteorological parameters, 

including daily precipitation (mm), wind speed (m s-1), wind direction (i.e. 

NSEW), solar flux energy (W m-2), air temperature (°C), soil temperature (°C), 

and relative humidity (%). These parameters were recorded every 5 minutes 

throughout the day, and were used in other studies within the SOWAP project, 

from soil microbiology to avian ecology. The primary parameter used in the 
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present research was precipitation. The information was recorded, relayed and 

updated daily onto the SOWAP website (www.sowap.org), allowing remote 

access. The weather station at Loddington can be seen in Plate 2.1-3. 

 
Plate 2.1-3 Loddington weather station 

2.1.4 Crop Regime 

Different cropping regimes were used at the two sites, thus direct comparison of 

results between sites was not possible. However, for each site, in any given 

season, the same crop was grown on all treatments. Details of the cropping 

management can be found for Loddington (Table 2.1-4) and Tivington (Table 

2.1-5).  
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Table 2.1-4 Crop management at Loddington 

Season Crop Regime Crop Dates Bunding Dates No. of tank 
clearances 

1 Winter Wheat September 2003 to 
September 2004 

IN 

OUT 

22/3/04 

18/6/04 

1 

2 No crop sown 

C: left as stubble for 
late ploughing * 

S: tilled and cover 
crop sown 

F: ploughed and 
residue left 

September 2004 to 
March 2005 

IN 

OUT 

27/09/04 

9/3/05 

 

4 

3 Spring Beans March to August 
2005 

IN 

OUT 

22/5/05 

7/8/05 

2 

4 Winter Wheat September 2005 to 
July 2006 

IN 

OUT 

2/11/05 

21/7/06 

4 

IN = installation and OUT = removal of the erosion plot boundaries. C, S and F 
represent the different treatments. * not typical of this treatment, but bad weather 
forces late ploughing 

Table 2.1-5 Crop management at Tivington 

Season Crop 
Regime 

Crop Dates Bunding Dates No. of tank 
clearances 

1 Winter Oil 
Seed Rape 

September 2003 to August 2004 IN 

OUT 

23/3/04 

20/5/04 

2 

2 Winter 
Wheat 

September 2004 to July 2005 IN 

OUT 

13/9/04 

15/7/05 

8 

3 Winter 
Beans 

November 2005 to July 2006 IN 

OUT 

6/12/05 

4/8/06 

9 

2.1.5 Erosion Plot Layout 

Each erosion plot was 9-10 metres wide and between 45 and 70 metres in length, 

depending on the site location (section 2.1.3). This gave a plot size of 

approximately 0.05 of a hectare (Plate 2.1-4).  
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Plate 2.1-4 Erosion plots (Loddington) 

The plots were delineated by sheets of galvanised metal, (each measuring 2.5m 

long, 0.3m wide and 1mm thick) which were overlapped, clipped and hammered 

into the ground to a depth of at least 15cm (Plate 2.1-5) to limit lateral sub-

surface flow in and out of the plot area. At the top of the erosion plots, the metal 

sheets were bent into right-angles for the corners. At the bottom edge of each plot 

the metal sheets were angled across the slope towards large funnels made of 

galvanised metal (2m wide opening). A layout of the funnels can be found in 

Appendix A. These funnels directed any runoff and soil loss generated on the 

plots, through plastic piping (15cm diameter) and into the system of collecting 

tanks (Plate 2.1-6). Wire mesh was placed on the face of the collection funnels to 

prevent small animals and debris entering the collection tanks and contaminating 

the collected runoff and sediment. 

 
Plate 2.1-5 Installation of erosion plots Plate 2.1-6 Funnel and pipes 
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The collection system (Plate 2.1-7) consisted of a primary collection tank, which 

received all runoff and sediment generated from the erosion plots. Once this tank 

was full, a slot device at the top of the tank’s backwall allowed 1/9th of the 

overflow to spill into the 2nd tank, which was located down slope of the first tank. 

A 3rd overspill tank (receiving 1/9th of the overspill from tank 2) was installed for 

each plot at Tivington, because of the greater rainfall and runoff predicted for this 

site.  

The primary tank for each plot (2 plots per treatment) contained a floating sensor 

which was connected to the on-site weather station (Plate 2.1-3). Runoff levels 

were recorded and could be accessed remotely. As previously stated, other site 

parameters were recorded by the weather station, including air and soil 

temperature, wind direction, sunlight, and most importantly for erosion studies, 

rainfall depth. This system was updated every 5 minutes and could be accessed 

remotely. The tanks were set within a large reinforced pit below ground level, 

which had its own drainage system to a local water course to prevent flooding 

during heavy rainfall and tank emptying operations (section 3.1 Plate 3.1-2). 

Each tank had a lid to prevent direct rainfall entering the tank, and to limit 

evaporation of the retained runoff. The lids were removable for the purpose of 

tank clearing (Plate 2.1-8). At the base and to the side of each tank was an outlet 

pipe used for tank emptying and cleaning.  

 
Plate 2.1-7 Collection system 

 
Plate 2.1-8 Inflow pipe, collection tank and 
tank lid 
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The tanks were emptied as soon as logistically possible after a runoff event had 

been recorded by the tank sensors, and relayed to the SOWAP website.  During 

periods of intense rainfall multiple rainfall events may have occurred before a 

collection could be made. Hence, tanks were not necessarily emptied on an event 

basis. Measurements of the runoff and sediment included total runoff depth (mm) 

and volume (l), total soil loss (kg), and associated with these were nutrient (NPK) 

and carbon concentration and loadings. A list of the analysis undertaken can be 

found in Appendix B. 

2.2 Statistical Analysis 

All results in this study were analysed using the statistical computer package, 

Statistica version 7.0 (StatSoft Inc, Bedford, UK). All data analysis compared 

treatment means across different temporal scales; a list for each chapter is 

summarised in Table 2.2-1. At each spatial scale simple correlations were 

performed using data from the entire sampling period, between the runoff and 

sediment data with soil properties and surface characteristics. 

Table 2.2-1 Summary of temporal analysis performed on treatment data 

Chapter Temporal scale 

Three: field erosion plots overall, season, tank clearance 

Four: micro-plot rainfall simulations overall, season, simulation trial 

Five: aggregate stability overall, season, simulation trial 

All analysis was performed using an analysis of variance (ANOVA) and 

subsequent post hoc comparison through a Fisher LSD test. To satisfy the 

assumptions made by ANOVA, all data were tested for normality (Skewness and 

Kurtosis) and equal variance (Levene’s test for homogeneity of variance). If data 

were identified as having a non-normal distribution and/or unequal variance then 

mathematical transformations were carried out. Initially all types of 

transformations were applied and are listed in Table 2.2-2 and the one that gave 

the greatest normality and equal variance was chosen. 
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Table 2.2-2 Types of transformation 

Reference Transformation 

Type I Square root 

Type II  Natural log plus one 

Type III Natural log 

Type IV Inverse of the square root plus one 

Data that had undergone transformation were then back-transformed (i.e. the 

mean outputs were then calculated with the inverse to the original 

transformation) Where transformation was necessary the back-transformed 

means are presented within the text. Due to some data sets having unequal 

replications, pooled standard errors could not be calculated. Therefore instead of 

error bars, or numerical notation, letters have been used to denote significant 

difference (the same letters are statistically the same). All tests were performed at 

95% confidence.  
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3 Plot scale erosion assessment 

3.1 Introduction 

Hudson (1957) claims that field erosion plots probably give the most reliable 

results on soil loss per unit area. They are used widely in erosion research for the 

collection of runoff and sediment (and associated losses of nutrients, agro-

chemicals or soil carbon etc.), or for the study of specific erosion features, such 

as rills. The way in which field erosion plots are used is dependent on their size. 

Although not applicable to all research Stoosnijder (2005) summarised the 

different sizes of erosion plot used for various studies. According to 

Stoosnijder’s definition, the plots being used in the current study fall between hill 

slope sized plots (<500m2) and field plots (<1ha), which Stoosnijder argues are 

appropriate for sediment deposition and channel studies, respectively (Table 

3.1-1). However, Hudson (1995) would class the plots used within this study as 

being small-scale plots rather than field plots, which he described as 

approximately one hectare in size.  

Table 3.1-1 Spatial scales as defined by Stoosnijder (2005) 

Spatial scale Size 

The point scale for interrill (splash) erosion 1 square metre 

The plot for rill erosion 100 square metres 

The hillslope for sediment deposition 500 square metres 

The field for channels 1 hectare 

There are advantages and disadvantages associated with the use of erosion plots, 

and it is important to understand these fully before developing a research 

methodology based on field erosion plot results. When using erosion plots of a 

large size (>100m2) it becomes difficult to simulate realistic, reliable and uniform 

rainfall, so runoff and soil loss generation tend to rely on natural rainfall events. 

Whilst this reflects the natural field conditions it also makes any data generated 

effectively non replicable. Soil loss and runoff are often only generated by larger 
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rainfall events. Hudson (1995) states that erosive rainfall only occurs >25mm h-1, 

whereas Morgan (2005) estimated this to be >10 mm h-1 for temperate climates. 

The unpredictability of natural rainfall can also cause problems with regard to 

staffing the plots for runoff and sediment collection (Hudson 1995). 

Field erosion plots consist of various components. Runoff and sediment 

generated on each plot runs into the collection system located at the downslope 

edge of the plot. Research projects have used a variety of collection systems, 

such as automated flumes and large collection tanks, capable of collecting all 

runoff and soil generated on the plot. Hudson (1993) has shown some of the 

problems caused by ill conceived collection systems. These have included 

insufficient tank storage, leading to runoff overflowing and the collection tanks 

floating away during a heavy storm. The collection system used in this study 

comprises of a sequence of collection tanks – 2 for each plot at Loddington (Plate 

3.1-1), and 3 for each plot at Tivington. The runoff and soil loss generated on a 

plot is directed into the first tank. Once this tank is full, a slot device at the top of 

the tank’s backwall allows 1/9th of the overflow to spill into the 2nd tank, which is 

located down slope of the first tank. A 3rd overspill tank (receiving 1/9th of the 

overspill from tank 2) was installed for each plot at Tivington because of the 

greater rainfall and runoff predicted for this site. The tanks are set within a large 

reinforced pit below ground level, which has its own drainage system to a local 

water course to prevent flooding during heavy rainfall and tank emptying (Plate 

3.1-2).  

Another very important aspect of field erosion plots is whether they should be 

bounded or unbounded. There is no standard, as to whether or not a plot should 

be bounded, and if so what material should be used. Unbounded plots have the 

advantage that they do not incur “edge effects” (see below) and normal farming 

practices can be undertaken across the plots, with no additional staffing required 

to remove or reinstall the boundary material. Unbounded plots represented an 
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“open system”, which allows natural functioning of hydrological pathways and 

allows the plots to be replenished with eroded soil from up slope. However, the 

natural variability of slope morphology in the field means that unbounded plots 

(as determined by the natural topography), cannot be replicated in terms of space. 

Also, tillage operations may change the slope topography and thus alter the 

catchment area of each plot. 

Plate 3.1-1 Tank layout at Loddington Plate 3.1-2 Pit drainage channel (Tivington) 

Alternatively, field erosion plots are often bounded (by compacted earth bunds, 

sheet metal, plastic strips etc. – see below) to demarcate precisely the catchment 

area contributing the runoff and sediment collected at the downslope edge of the 

plot. These physical plot boundaries may however, interfere with the erosion 

processes being observed (known as “boundary” or “edge” effects). For example, 

a compacted earth bund may contribute more runoff to the plot area than would 

occur naturally. Metal sheets inserted into the soil as plot boundaries may create 

preferential pathways for vertical flow so reducing surface runoff. Hudson (1995) 

suggested that to minimise boundary effects, field erosion plot size should be at 

least 5 m wide and 20 m long. However, the standard plot size used for the USLE 

plots of Wischmeier & Smith (1978) is stated as being 1.8m wide and 22m long 

(Morgan 2005). This indicates that there is still confusion and uncertainty as to 

the appropriate size of plot to use.  
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The size of field erosion plots used in research is varied; with many studies using 

the USLE defined size of 1.8m wide by 22m wide (Basic et al. 2004; Hartanto et 

al. 2003; Romero-Diaz et al. 1999) but just as many using their own defined 

sizes. A few examples are shown of the different sizes used in research on soil 

management practice effect on runoff and soil loss. The eight experimental plots 

used in the research carried out at Rothamsted, Woburn, were 24 by 36 metres or 

0.086ha (Rickson 1994; Quinton et al. 2006), where two contrasting soil 

management treatments were investigated. In work by Andraski et al. (1985) 

where four tillage treatments were compared (3 conservation based, 1 

conventional), field erosion plots were installed at 4.6m wide and 22.1m long. 

Research carried out by Boix-Fayos et al. (in press) used erosion plots sized 15m 

by 5m and 10m by 3m. Ollesch & Vacca (2002) investigating different land use 

on three different hill slopes, used 18 field erosion plots of 20m2; 10m long by 

2m wide. Williams (2004) studied field hydrology under five different soil 

management treatments; these were duplicated, equalling 10 plots, each 

measuring 12m by 40m (0.05ha).  

The field erosion plots being used in this study are of sufficient size to overcome 

any boundary effects. The plot sizes differ slightly between sites; at Loddington 

the mean plot size was 70m long and 9m wide and at Tivington 55m long and 

10m wide. It is assumed that these are effectively the same spatial magnitude, 

and that the same scale of erosion process is operating at both sites. The plot 

dimensions were chosen to maximise size but still allow duplication per 

treatment within the field space available. 

Another problem of bounded plots is that the plot becomes depleted of fresh soil. 

As soil erodes within a bounded plot and is collected, there is no new soil from 

upslope to replace it. Over time there is a risk that the measured erosion rates do 

not reflect the natural system as erosion rates decrease with time due to less 

available soil to erode. In work carried out by Boix-Fayos et al. (in press) the 

period of soil exhaustion was between four to seven years. This period is 
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dependent on the surface characteristics, the local climatic conditions, size of the 

field erosion plots (Boix-Fayos et al. in press), depth of soil, and erosion / 

formation rate of soil. The risk of exhaustion or depletion within this study is not 

a factor, due to the sufficient depth of topsoil, the relatively low erosion rates 

experienced in the UK, and the fact that local replenishment of soil by natural 

processes is possible when the plot boundaries are removed each season to allow 

tillage operations. 

The benefit of using bounded plots is that runoff and soil loss can be measured 

over a given area which allows losses to be compared with other treatments 

within one study, or with the results from other studies. There is no set way in 

which a field plot should be bounded. Work undertaken at the Rothamsted 

Experimental Station at Woburn for example (Rickson 1994) used grassed earth 

bunds (1m wide and 30cm high) to demarcate the erosion plot area. These had 

the advantage that farming machinery could cross them during field operations. 

Earth bunds have also been used in work by Barton et al. (2004) and Quinton et 

al. (2006). In the experiments carried out by Hudson (1957) field erosion plots 

were bounded by asbestos planks, which were removed and reinstalled to allow 

farming operations. As well as the hazardous health and safety aspects of this 

material, these planks could not be sunk into the ground to limit water movement 

in and out of the plots. Other materials and ways of bounding plots include wood 

(Hartanto et al. 2003), brick or concrete (Correchel et al. 2006), sheet metal 

(Basic et al. 2004; Burney & Edwards 1994; Hartanto et al. 2003; Ollesch & 

Vacca 2002) and drains/ditches (Romero-Díaz et al. 1999; Williams 2004). In 

this study, galvanised metal sheets (2.5m long, 0.31m wide and 1mm thick) were 

inserted into the soil to a depth of at least 15cm to limit lateral water movement 

and define plot catchment area (Plate 3.1-3). The sheets were removed to allow 

for field operations, including drilling, spraying and harvesting, and then 

reinstated once the operations were completed. 
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As with many field experiments, 

data errors and variability are 

associated with field erosion plots 

and must be taken into account. 

Replication is therefore important. 

Where erosion plots are used for 

demonstration purposes only, 

generally only one plot is used per 

treatment (Hudson 1995). For more 

rigorous, scientific research it is 

advised that at the very least two 

replicates should be used (Morgan 

2005). In this study two duplicates were installed per treatment at both UK sites. 

The limited number of replicates is a concern for this study, but is justified by the 

fact that a) the SOWAP Project is primarily a field-scale demonstration project 

(see Hudson’s comment above), and b) increasing the number of replicates 

would reduce individual plot size, given the finite space available for the field 

experimental layout. The consequence of this is that the plots would not be large 

enough to be representative of the field scale, and boundary effects would be 

more significant (see above) on the smaller plots. 

Variation between replicate plots is common in erosion research (Boix-Fayos et 

al. in press &. 2006). Work by Nearing et al. (1999) investigated results from 

replicated plot pairs for over 2000 storm events under a variety of soil conditions 

and site locations. This work showed that the variation of soil loss between 

replicates reduced as the magnitude of measured soil loss increased. A variation 

of just under 15% was found for a soil loss of 20 kg ha-1, compared to 150% 

variation for soil loss less than 0.01 kg ha-1. This variability between replicates 

may be the result of human error during sampling and measuring, especially in 

the assessment of sediment concentration (Zobisch et al. 1996), as well as the 

Plate 3.1-3 Bunding installation. Source 
www.sowap.org 
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natural field variation in the erosion plots themselves. Zobisch et al. (1996) 

studied the accuracy of runoff and soil loss measurements using a field collection 

system in the laboratory with 5 different members of staff. This work showed 

that human error contributed to the variation in measurements of runoff and soil 

lost from field erosion plots, with no automated sampling systems. Despite these 

studies, the variability between replicate erosion plots is not completely 

understood (Gómez et al. 2001).  

In research involving replicate field erosion plots, it is often assumed that the 

replicates are from the same population. In reality there are always inherent 

differences between plots (Nearing et al. 1999) due to natural fluctuations in the 

underlying parent material, slope, depressions, water table, and soil texture. 

These are compounded by human induced differences due to inconsistencies in 

sampling technique and/or farming operations. An analysis of the variation of 

soil loss among 40 identical replicated field erosion plots by Wendt et al. (1986), 

suggested that only a small proportion of the observed variation could be 

explained by measured soil properties. Using the same field erosion plot data and 

combining this with a numerical model, Gómez et al. (2001) suggested that 50% 

of the variation in runoff was attributable to the hydraulic conductivity, depth to 

clay pan and surface storage. Although not stated, the remaining 50% of 

variation could be due to human induced error and unaccountable variability 

related to spatial differences in field properties/condition. The research 

undertaken above highlights the inherent variability associated with field erosion 

plot studies. This is an important consideration, when embarking on erosion 

assessment using field plots. 

In brief, rainfall variability, plot size, method of bounding, number of replicates 

and inherent site variability are all important factors that contribute to the 

variation and reliability of scientific data generated on field erosion plots. In this 

study, all of the above factors have been taken into account in an attempt to 
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minimise error and gain a better understanding of soil erosion processes and 

severity at a field scale. 

3.2 Aim, Objectives and Hypotheses 

3.2.1 Aim 

The aim of this chapter is to investigate whether different soil management 

practices can improve the conservation of soil and water, and minimise losses of 

nutrients and carbon in runoff and sediment.  The practices under investigation 

are a conventional tillage treatment and two forms of conservation tillage 

treatment (2.1.2). The treatments were applied at two sites in the UK (Somerset 

and Leicestershire).  

3.2.2 Objectives 

The aims of the chapter will be met by quantifying and analysing runoff volume 

and soil loss under natural rainfall for three different soil management treatments 

– conventional tillage, and two forms of conservation tillage (SOWAP and 

Farmer’s Preference). Nutrient and carbon losses associated with the runoff and 

sediment are also quantified for the three different soil management treatments. 

Explanations for the observed results will be given, on the basis of supporting 

field evidence. 

3.2.3 Hypotheses 

3.2.3.1 Hypothesis One 

It is expected that runoff volume and the amount of soil lost from the field plots 

will be highest from the conventional tillage treatment when compared to the 

conservation tillage treatments (SOWAP and Farmer’s Preference). All other 

factors being equal (rainfall, slope gradient and length, etc.), runoff volume is 

influenced by the properties of the soil and the land surface, which in turn are 

affected by the soil management treatments.  



  

- 57 - 

In general, conventionally tilled soil will have primary and secondary 

cultivations, compared to just one cultivation operation on conservation 

treatments. The increased number of field operations on the conventional 

treatment will increase mechanical breakdown of soil aggregates, leading to soil 

compaction and therefore increased bulk density. Work from Smith (1987), has 

shown that dry bulk densities increase after the passage of vehicle wheels. This 

increased bulk density is the result of consolidation of the soil matrix, resulting in 

impeded drainage and infiltration rates, leading to increased runoff volume at the 

surface.  

The use of primary cultivation for the conventional tillage treatment also means 

that the soil is inverted, and an increase in the mechanical manipulation of the 

soil. This has dramatic effects on a variety of soil properties. Cutting through the 

soil with a plough (used in primary cultivation) mechanically breaks established 

pathways of preferential flow within the soil profile. The numbers of earthworms 

in particular deep burrowing species (anecic) and other organisms such as mites 

can be reduced (Brady & Weil 2002; Chan 2001). These larger organisms have 

multiple effects on the soil, one of which is the effect on infiltration rates. 

Earthworms in particular create preferential pathways of flow by burrowing 

through the soil profile. A reduction in infiltration rates can lead to increased 

volumes of overland flow. Earthworms have also been found to influence soil 

fertility and productivity (Brady & Weil 2002). The soil biota also increases 

aggregate formation via burrowing action from plant roots and organisms such as 

earthworms, and through biotic stabilising agents (Brady & Weil 2002; Stuttard 

1985) i.e. organic exudates and physical action through sticky root hairs and 

fungal hyphae. The presence of soil organisms leads to increase aggregate 

stabilisation, consequentially reducing soil erodibility. 

Organic soil aggregate connectors such as plant roots and fungal hyphae are 

destroyed by ploughing, as well as the alteration of microbial communities. 

Parallel to this study, the SOWAP project is also studying the effect of tillage on 
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the microbial community (Allton 2006). This alteration in the soil biota can 

affect soil properties adversely, such as soil structure, nutrient cycling, and soil 

aggregate stability, as discussed above (Brady & Weil 2002; Kladivko 2001). As 

organic cements and organic connectors (plant roots and fungal hyphae) are 

destroyed by the increased soil mechanical manipulation and inversion, aggregate 

stability is reduced. Soil surface caps and seals form to a greater extent, reducing 

infiltration rates (Robinson & Phillips 2001); soil loss and runoff will also 

increase. Where inversion and increased mechanical manipulation of the soil 

occur (as with conventional tillage), it is expected that soil loss and runoff will be 

greater, compared to a conservation treatment where tillage operations involve no 

inversion and less mechanical manipulation of the soil.   

The soil surface is also expected to differ between treatments. The omission of 

primary cultivation on the conservation treatment means that the surface soil has 

not been inverted, and there has been less mechanical manipulation and 

breakdown during a secondary cultivation operation. As a result surface 

aggregates from the conservation treatment have a wider range of aggregate sizes 

and a rougher soil surface. An increase in surface roughness can increase 

infiltration rates as there is a larger surface area over which infiltration can occur. 

Increase in surface roughness also promotes the formation of surface ponds 

which occur when water is prevented from flowing either vertically or 

horizontally. Surface ponds form as rainfall input becomes greater than 

infiltration rates, as may occur where the surface soil has become capped or 

sealed. The rougher the soil surface, the longer the residence time of runoff on 

the surface or within a pond, and flow velocity is reduced. Sediment entrained 

within the surface runoff falls out of suspension and settles on the soil surface, 

thereby reducing the amount of soil transported by the flow. Eventually the pond 

may completely fill with deposited sediment and retained runoff. When this 

happens the ponds will overflow initiating runoff. However, the presence of a 

rough surface reduces the hydraulic energy of this surface water (as expressed in 
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parameters such as Manning’s n), so reducing its potential energy to detach and 

transport soil (Foster 1982; Abrahams & Parsons 1991; Einstein & Barbarossa 

1951). Meyer & Wischmeier (1969) showed that flow detachment rates vary with 

the square of the runoff velocity; and flow transport rates vary with the fifth 

power of velocity. Hence any small reduction in runoff velocity (by surface 

roughness for instance) has significant effects on flow detachment and transport.  

Another important difference between the two forms of tillage treatment is the 

application of residues or the growth of a cover crop. In conventional tillage, no 

residues or surface cover are present after sowing. Until the new crop is 

established, the soil surface is completely bare and the soil is at the highest risk 

of erosion (Morgan 2005). On soils with conservation tillage, residues from the 

previous crop or a cover crop (e.g. mustard) are present before the establishment 

of the main crop. The amount of cover depends on the type of cover and site-

specific agronomy and soil management, but the general estimate when using 

residues is to cover approximately 30% of the surface (Uri 1999). The presence 

of a residue or cover crop affects soil erosion and runoff generation. Surface 

cover physically protects the soil from rainfall impact, reducing soil detachment 

and the subsequent processes of soil surface capping and sealing, which can lead 

to increased runoff generation or overland flow. In addition to this, residues can 

act as a physical barrier to overland flow, reducing the hydraulic energy of flow 

thereby encouraging deposition of any soil in suspension, lowering soil losses. 

This is why mulch has been shown to be successful in the reduction of soil 

erosion and runoff generation (Fiener et al. 2005; Lal 1976; Laflan & Colvin 

1981). The impedance to flow from surface cover also increases the depth of 

runoff, creating a protective buffer against raindrop impact on the soil surface 

(Palmer, 1965). Residues also reduce soil evaporation and soil drying, which 

improves water availability to the crops. This leads to a healthier crop stand 

which is able to protect the soil from erosion and runoff generation.  Minimising 

soil drying also has an important role in aggregate wettability and reduction in 
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macro-pore formation. Finally, the increases in soil organic matter content 

associated with surface residues (Robinson & Blackman 1989) are known to 

increase soil biota (Six et al 2004) and improve the stability of soil aggregates 

(see chapter 5). 

3.2.3.2 Hypothesis Two 

It is expected that nutrient and carbon losses in the runoff and sediment will be 

less from the plots subjected to the conservation tillage treatment, compared to 

the conventional treatment. As stated in section 3.2.3.1 runoff volume and soil 

loss is expected to be higher from the conventionally tilled soil because of factors 

such as increased mechanical manipulation of the soil, and subsequent aggregate 

breakdown, reduced infiltration rates, reduction in surface ponding and sediment 

deposition, the lack of protective surface residues and a reduction in soil organic 

content and thus aggregate stability.  

It is particularly important that erosion of the soil’s clay fraction and organic 

matter should be minimised. The colloids of both clay particles and humus 

(derived from organic matter decay) have very large surface areas resulting in 

high adsorptive capacity of cations and to a lesser extent, anions. In the context 

of this research the presence of clay and humus colloids increases nutrient 

chelation. The negative charge of colloids means that cations (in this study refers 

to potassium) are readily adsorbed. Anions (which, in this study include nitrate 

and phosphate) are also adsorbed but to a lesser extent – adsorption decreasing 

with an increase in pH, which is the opposite for cation exchange (Brady & Weil 

2002). Compared to cations, anions exist in soil solution for an increased period 

of time, and as a result are most at risk from leaching or loss via runoff.  

The loss of nutrients and carbon in eroded sediment and runoff from agricultural 

fields has on- and off-site consequences. Both nutrients and carbon are vital to 

crop productivity and yield. As previously mentioned in (section 1.2.5.2) 

nitrogen is important for rapid plant growth and seed/fruit formation; phosphorus 
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allows plants to convert light into chemical energy; potassium is essential in 

plant enzyme reactions and resistance to environmental stresses (drought and 

disease); and carbon is vital for crop productivity. Losses nutrients and carbon 

therefore force farmers to apply additional supplies to replenish the system. 

The loss of nutrients in runoff and sediment also causes off-site impacts. Nitrate 

contamination of drinking water is of great concern due to of the health 

implications, such as the contraction of the blood condition which affects young 

babies called methaemoglobinaemia, alternatively known as ‘blue baby 

syndrome’ (DEFRA 2003). The mobilisation of nitrogen and phosphorus from 

agricultural sources to water bodies is one of the primary causes of 

eutrophication (DEFRA 2003). Eutrophication (over-enrichment of water bodies) 

is an environmental concern for freshwater and marine ecosystems, where 

phosphorus and nitrogen are the limiting nutrients, respectively (Brady & Weil 

2002). Input of these nutrients into the aquatic environment can lead to the rapid 

utilisation of existing levels carbon and potassium within the system by aquatic 

biota, leading to excessive growth aquatic vegetation and phytoplankton.   

3.3 Methodology 

Runoff and soil loss at the plot scale were studied at two UK sites - Loddington, 

Leicestershire and Tivington, Somerset (section 2.1.1). At these two sites, three 

soil management treatments were applied; one conventional (C) tillage treatment, 

and two conservation tillage treatments – SOWAP (S) and Farmer’s Preference 

(F). More details of these treatments can be found in section 2.1.2. At each site, a 

demonstration field was identified in advance of the present study (summer 

2003), where two erosion plots for each treatment were located. A detailed layout 

of the field erosion plots at each site can be found in sections 2.1.3 and 2.1.5.  
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3.3.1 Analysis of collected runoff and sediment 

The procedure for analysing the collected runoff and sediment followed that 

already in use on the PROTERRA project, which studied runoff and soil loss 

from field erosion plots under different Mediterranean agricultural systems 

(Llewellyn, 2006). As soon as possible after a rainfall event (as indicated by the 

weather station read-outs on the SOWAP dedicated webpage2) the site was 

visited for measurements to be taken. The depths of collected runoff and of 

sediment in the tank were measured from the base of the tank. Several depth 

measurements were taken at various random points in the tank to account for any 

variability in runoff and sediment depth within the tank. Three 1 litre water 

samples were taken from the collected runoff, without any agitation of the tank 

contents. Once these samples had been taken the remaining runoff in the tank 

was either pumped or drained off, and released onto the surrounding grassed 

area, thereby allowing slow infiltration towards the local water course. Care was 

taken not to drain or pump away any of the sediment retained at the bottom of the 

tank. The depth of these sediments was measured at several points to calculate a 

mean depth of retained sediment. Total sediment was removed from the tanks 

using plastic scoops and placed into buckets. The last traces of sediment were 

scraped from the bottom of the tank using a squeegee wiper. The weight of each 

bucket was noted, and the collected sediment was re-distributed on the field, 

away from the field erosion plots. A scoop of sediment (around 100ml) from 

each filled bucket was taken and put aside, to be used in later analysis (see 

below). The minimum amount of sediment required for analysis was 

approximately 1kg. Once the tank had been emptied of runoff and sediment, the 

inside was washed and cleaned ready for the next runoff event. 

The samples of runoff were analysed for soluble nutrients (N, P and K), carbon 

and total suspended sediment. The sediment samples were analysed for moisture 

                                                 
2 www.sowap.org  
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content, organic matter, associated nutrients (N, P and K), carbon and particle 

size. A list of these measurements can be found in Table 3.3-1. These parameters 

were measured as they were considered to be indicators of soil quality or they 

affected soil erodibility. More detailed information about these parameters can be 

found in 1.2.5). 

Table 3.3-1 Analysis of runoff and sediment in collection tanks. 

Analysis Runoff Sediment 

N yes - soluble nitrate yes - total N 

P yes – soluble phosphate yes - total P  

K yes – soluble potassium yes - total K 

TOC (total organic carbon) yes yes 

suspended sediments yes  

moisture content  yes 

total sediment mass (kg) (=  mass of suspended 
sediment in runoff + mass of sediments 
deposited on bottom of tank) 

 yes 

organic matter  yes 

particle size (textural analysis)  yes 

3.3.2 Additional soil measurements 

Additional surface characteristics and soil properties were measured adjacent to 

and within the field erosion plots to provide supporting information in order to 

explain the differences in runoff and sediment observed for the different tillage 

treatments.  

Within the field erosion plots, crop and weed surveys were carried out. Without 

walking on the plot itself, three quadrats (1m2) were placed at the bottom, middle 

and top of each field erosion plot, at approximately 0.5m inside the plot (to avoid 

boundary effects). Within each quadrat the percentage surface cover due to crop 

and weed cover, residues and stones was calculated. Also within each quadrat the 

presence of any erosion features was noted and the surface roughness measured. 

Surface roughness was calculated by taking a small ball (5mm) linked chain, 1 
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metre in length and draping it across the soil surface. The ratio of distance 

covered to actual length of chain is an indicator of surface roughness (Morgan et 

al. 1988). Hence, on a perfectly smooth surface the 1m long chain would measure 

1m in distance, whereas the same chain would cover a much smaller distance on 

a rough surface, as it conforms to micro-topographic irregularities i.e. surface 

troughs and ridges.  

Outside of the field erosion plots, the following soil properties were measured in 

the top 5cm of soil, taken to be representative of the surface soil - soil texture 

(particle sizes), organic matter content, moisture content (gravimetric and 

volumetric), bulk density, organic carbon and nutrients (total nitrogen, 

phosphorus and potassium) These soil properties were taken biannually in 

conjunction with the micro-plot, rainfall simulation experiments in the spring and 

autumn (chapter 4) of each season. These measurements may provide 

explanation of the magnitude of and variations in runoff and soil losses observed 

from the two spatial scales of erosion plots studied in this thesis. 

3.4 Results 

This results section will show all data relating to the field erosion plots in relation 

to the previously set out objectives (section 3.2). Results were standardised to per 

unit area, to allow for the variable plot size. Soil and runoff losses have been 

expressed as losses per hectare or concentrations per litre. The runoff and soil 

loss results are presented for each site separately. For each site, the runoff and 

soil loss data and associated nutrient and carbon losses are analysed for treatment 

differences at 3 temporal scales: 

 The mean loss for the entire sampling period (the mean of each treatment 

over all tank clearances) 

 The mean loss for each cropping season (the mean of each treatment over all 

tank clearances within each season) 
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 The mean loss for individual tank clearances (the mean loss for each 

treatment for each individual tank clearance) 

Statistical analysis could be carried out on the results from duplicate plots due to 

the temporal replication. Where results were not normally distributed, and had 

unequal variance, the data were transformed to allow ANOVA to be performed. 

Details of the statistical analysis undertaken in this chapter can be found in 

section 2.2. Where statistically significant differences between treatments have 

been found, these have been highlighted. Cumulative results are also shown; 

however, no statistical analysis could be carried out. 

3.4.1 Loddington 

3.4.1.1 Hypothesis to be tested 

The mean runoff, soil loss and associated nutrient and carbon losses over all tank 

clearances will be higher from the field erosion plots where conventional tillage 

has been applied, compared to the conservation treatments (SOWAP and 

Farmer’s Preference). To test the hypotheses specifically, more emphasis is 

placed on comparing differences between treatments at each of the different 

temporal scales, rather than comparisons of individual treatment results between 

seasons or sites. 

3.4.1.2 Runoff  

3.4.1.2.1 Runoff volume 

The runoff volumes over the entire sampling period were analysed for each 

treatment. The runoff volume data were normalised (Type I) to allow ANOVA to 

be performed. The normalised treatment means were then back transformed to 

the original scale. The overall mean runoff loss for the entire sampling period 

was 1157 l ha-1 from the conventional treatment and 1617 and 2244 l ha-1 from 

the conservation treatments, SOWAP and Farmer’s Preference, respectively. 

Graphical outputs for runoff volume over the entire sampling period and for each 
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season can be found in Figure 3.4-1.  Statistical analysis of the normalised data 

showed no significant differences between treatment means at any of the three 

temporal scales – over the entire sampling period, at each season or for each tank 

clearance. Despite this, the overall mean results show a (non-significant) 

treatment trend of runoff volumes being lowest from the conventional treatment, 

and highest from the Farmer’s Preference conservation treatment. This trend was 

also found during the third and fourth season (Figure 3.4-3).  
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Figure 3.4-1 Loddington: runoff volume for each season. Lettering signifies 
statistical differences. 
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Figure 3.4-2 Loddington: runoff volume for each erosion plot and the combined 
cumulative results for each season. Treatments where C=conventional, S=SOWAP 
and F=Farmer’s Preference. 
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Figure 3.4-3 Loddington: runoff volume over the entire sampling represented as 
mean (left) and cumulative (right) results. Lettering signifies statistical differences  

The cumulative results for each season (Figure 3.4-2) and over the entire 

sampling period (Figure 3.4-3) the variation between the duplicate plots for each 

treatment. Overall the conventional treatment shows the greatest variation 

between plots in terms of runoff generation. The seasonal cumulative results 

show the relative contribution of each season to the total runoff generated. The 

second season produced the highest runoff volumes representing 68.5% of the 

total runoff generated over the entire sampling period (Table 3.4-1). Results for 

both the conventional and SOWAP treatments generated the most runoff during 

the second season. The runoff volumes from the Farmer’s Preference during the 

second and fourth season were similar. These results might be related to rainfall 
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patterns in each season, although Figure 3.4-4 shows that the fourth season 

received the most rainfall, yet season two generated the greatest amount of 

runoff.  

Table 3.4-1 Loddington: relative percentage of overall cumulative results (from 
both duplicates) for each treatment and for each season compared to the total 
runoff generated. 

% Conventional SOWAP Farmer’s Preference Total 

Season 1 1.48 1.85 1.87 5.20 

Season 2 16.43 34.24 17.85 68.52 

Season 3 0.32 0.45 0.70 1.47 

Season 4 2.14 5.07 17.62 24.82 

Total 20.36 41.60 38.03 100.00 
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Figure 3.4-4 Loddington: precipitation data for each season. The data shown 
represents rainfall from installation to removal of the erosion plots. Floating 
numbers above each season indicate total rainfall received for that time period. 

3.4.1.2.2 Nutrient Loss 

Runoff generated from the field erosion plots was analysed for nutrient 

concentrations and total loads. Nutrient loads were a function of runoff volume. 
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The nutrients tested for were nitrogen, phosphorus and potassium. Each nutrient 

will be addressed separately in the following text. 

Nitrogen 

Collected runoff was analysed for nitrate, and the results are expressed as soluble 

nitrogen concentration, and total load (as a function of the runoff volume). The 

data for both concentrations and loadings of N were normalised through a Type I 

transformation (section 2.2) to allow ANOVA to be performed. The mean N 

concentration (over the entire sampling period) in the runoff for the three 

treatments ranged between 4.5 and 5.1 mg l-1 and are presented in Table 3.4-2. 

Statistical analysis was carried out on nitrogen concentrations over the entire 

sampling period, where no significant differences were found. This was also the 

case when treatment means were analysed over all tank clearances. Seasonal 

analysis showed that there was a significant treatment difference (p<0.005) 

during the first season (Figure 3.4-5), March to June 2004. Here, nitrogen 

concentrations were greatest in runoff generated from the Farmer’s Preference 

treatment in comparison to the other conservation treatment (SOWAP) and the 

conventional treatment. 

Table 3.4-2 Loddington: runoff associated mean nitrogen over the entire sampling 
period 

Treatment Concentration (mg l-1) Loading (g ha-1) 

Conventional 4.53 4.42 

SOWAP 4.70 7.71 

Farmer’s Preference 5.12 15.87 

The mean loading of nitrate associated with the runoff over the entire sampling 

period are presented in Table 3.4-2. Statistical analysis was carried out on the 

normalised nitrate loads. There were no significant treatment differences when 

analysed at any of the 3 temporal scales - over the entire sampling period, 

seasonally or across the different tank clearances. 



  

- 70 - 

0

2

4

6

8

10

12

C S F
0

2

4

6

8

10

12

C S F

0

5

10

15

20

25

30

C S F
0.0

0.5

1.0

1.5

2.0

2.5

C S F

a

a

a a

a
a

a

a
a

b

a
a

Conventional SOWAP Farmer’s Preference

May – Aug 05 Nov 05 – July 06

R
un

of
f N

itr
og

en
 (m

g 
l-1

)
R

un
of

f N
itr

og
en

  (
m

g 
l-1

)

Treatments:

Mar - Jun 04 Sept 04 – Mar 05season 1 season 2

season 3 season 4

 
Figure 3.4-5 Loddington: nitrogen concentration associated with the runoff. 
Lettering signifies statistical differences 

Phosphorus 

Collected runoff was analysed for phosphate and the results expressed as soluble 

phosphorus concentration and loading. The results for both mean P concentration 

and loadings were normalised (Type I). The mean P concentration was 0.8 mg l-1 

in runoff from the conventional treatment and 0.1 mg l-1 from both conservation 

treatments. Statistical analysis showed a significant difference between treatment 

means over the entire sampling period. Phosphorus concentration was 

significantly higher from the conventional treatment (Figure 3.4-6) compared to 

both conservation treatments (p=0.003). There were no significant differences in 

P concentration between treatment means when analysed seasonally or over all 

tank clearances. 
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Figure 3.4-6 Loddington: I) phosphorus concentration in the runoff; II) 
phosphorus load in the runoff. Lettering signifies statistical differences 

Statistical analysis of treatment means over the entire sampling period of 

phosphorus loading in the runoff were significantly different (p=0.04); the result 

from the conventional treatment was significantly higher than both conservation 

treatments (Figure 3.4-6). The overall means were 0.53 g ha-1 from the 

conventional plot and 0.11 and 0.14 g ha-1 from the SOWAP and Farmer’s 

Preference treatments, respectively. 

Potassium 

Runoff was analysed for concentration and loading of potassium. Both data sets 

were normalised (Type II) to allow ANOVA to be carried out. The treatment 

means of both potassium concentration and loads were statistically analysed over 

the entire period, seasonally and for each separate tank clearance. Analysis 

showed no significant difference between treatments at any of the temporal 

scales. The mean potassium concentrations and loads can be found in Table 

3.4-3. 

Table 3.4-3 Loddington: runoff associated mean potassium over the entire 
sampling period 

Treatment Concentration (mg l-1) Loading (g ha-1) 

Conventional 32.38 26.24 

SOWAP 18.49 20.30 

Farmer’s Preference 16.93 19.12 
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3.4.1.2.3 Carbon Loss 

Runoff generated from the field erosion plots from each treatment was analysed 

for concentration and loading of total organic carbon. The data for both 

concentrations and loadings were not normally distributed, and had unequal 

variance, so the data was transformed (Type II) to allow ANOVA to be 

performed.  The treatment means of total organic carbon concentration and 

loading in the runoff were analysed over the entire sampling period, seasonally 

and for each separate tank clearance. Differences between treatment means were 

not statistically significant at any of the temporal scales investigated. The overall 

mean of runoff associated carbon concentration and loads can be found in Table 

3.4-4.  

Table 3.4-4 Loddington: runoff associated mean total organic carbon over the 
entire sampling period 

Treatment Concentration (mg l-1) Loading (g ha-1) 

Conventional 11.34 9.55 

SOWAP 7.39 9.28 

Farmer’s Preference 6.85 10.24 

3.4.1.3 Soil Loss 

3.4.1.3.1 Sediment 

Soil losses at the three temporal scales were investigated – over the entire 

sampling period, on a seasonal basis and for each tank clearance. The data were 

not normally distributed and so were normalised (Type I) to allow ANOVA to be 

undertaken. Statistical analysis showed there was a significant difference 

(p=0.04) between treatments when compared on a tank clearance basis (Figure 

3.4-7). However, LSD outputs showed this to be the case for the second tank 

clearance only. The soil loss from this tank clearance (carried out on the 22nd 

October 2004) was much higher when compared to all other 10 clearances, and 

so had to be presented on a separate graph (Figure 3.4-9). The soil lost from the 
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SOWAP treatment during this tank clearance was significantly higher than that 

generated by the other two treatments (conventional and Farmer’s Preference). 

Soil loss results from Loddington were also analysed on a seasonal basis; no 

significantly difference were found. The results are presented in Figure 3.4-10. 

Although not significant it can be seen that in season one and two the treatment 

trends were similar, with losses being the highest from the SOWAP treatment. 

During season three no sediments were collected from the base of the tank. 

Results represent only the mass of suspended sediment in the runoff, which is 

why the results are much lower than the other seasons, when sediment was also 

found on the bottom of the tank.  There was also no significant difference 

between treatments during season four.  
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Figure 3.4-7 Loddington: soil loss for every tank clearance. # soil loss results too 
high to show on this graph (see Figure 3.4-8). 
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The results from the second tank clearance were unusually high and so were 

removed to identify the significance of this result on the remaining dataset. Once 

removed, the results from the Farmer’s Preference treatment during season four 

became significantly higher than the other two treatments (p=0.01). The 

reasoning behind this unusually high clearance can be found in the discussion. 

All further presentation of results was done using the full dataset. 
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Figure 3.4-9 Loddington: soil loss 
from the October 2004 tank 
clearance. Letters represent 
significant differences 
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Figure 3.4-10 Loddington: soil loss for each season. Lettering signifies statistical 
differences. # = units expressed are 10– 6. Lettering signifies statistical differences 
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The last temporal scale analysed was the mean soil loss over the entire sampling 

period. Statistical analysis showed no significant difference between treatments 

with the inclusion (Figure 3.4-11) or exclusion of October 2004 tank clearance. 

The overall and seasonal cumulative soil loss results from each treatment were 

plotted (Figure 3.4-12 and Figure 3.4-11). The overall cumulative results showed 

the same treatment trends as the overall mean. The cumulative soil loss was 

higher than the other two treatments (conventional and Farmer’s Preference). The 

cumulative results (overall and seasonal) show the variation that existed between 

erosion plots of the same treatment. The two plots from the SOWAP treatment 

showed the least amount of variation.  
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Figure 3.4-11 Loddington: soil loss over the entire sampling represented as mean 
(left) and cumulative (right) results. Lettering signifies statistical differences  
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Figure 3.4-12 Loddington: cumulative soil loss for each season. Treatments were – 
C=conventional, S=SOWAP and F=Farmer’s Preference 
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The majority of soil loss occurred during the second season for all treatments, 

clearly seen in Figure 3.4-12, making the treatment trends found during this 

season important for the results overall. Calculations were made as to the 

percentage of soil lost from each treatment during each season compared to the 

total amount over the entire sampling period. These results are presented in Table 

3.4-5. Soil losses from season two represent over 89% of the total amount lost. 

The SOWAP treatment contributed to 59% of the total soil loss compared to 24% 

from the Farmer’s Preference and 17% from the conventional treatment. 

Table 3.4-5 Loddington: relative percentage of overall cumulative results from 
each treatment and for each season compared to the total soil loss. 

% Conventional SOWAP Farmer’s Preference Total 

Season 1 1.18 2.59 1.08 4.85 

Season 2 15.71 55.79 17.57 89.07 

Season 3 0.00 0.00 0.00 0.00 

Season 4 0.38 0.65 5.06 6.08 

Total 17.27 59.02 23.71 100.00 

3.4.1.3.2 Nutrient Loss 

Soil lost from the field erosion plots from each treatment was collected and 

analysed for nutrient concentration and total loads. Nutrient loads were a function 

of soil loss. Nutrient concentration and loads could only be analysed for the 

entire sampling period, and over the first and second season due to insufficient 

sediment being retained in the collection tanks for nutrient analysis. Comparisons 

for each tank clearance were not possible, again due to insufficient sediment 

generation. However, where there was sufficient sediment for analysis, the 

nutrients analysed were total nitrogen, phosphorus and potassium. Each nutrient 

will be addressed separately in the following text. 

Nitrogen 

 Soil lost from the field erosion plots was analysed for nitrogen concentration and 

total load. The nitrogen concentration data were normally distributed with equal 
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variance. The mean nitrogen concentration did not exceed 6500 mg kg-1 from any 

of the treatments.  Statistical analysis of the treatment means over the entire 

sampling period showed no significant differences. This was also the case when 

results were compared seasonally. 

The total nitrogen load in the sediment was normalised (Type II) to allow 

analysis of variance to be carried out. Statistical analysis of treatment means over 

the entire sampling period and on a seasonal basis showed no significant 

differences. The mean nitrogen load associated with the eroded sediment ranged 

between 16 and 76 g ha-1 for the 3 treatments. 

Phosphorus 

The phosphorus concentration and loads in the sediment were not normally 

distributed, so were transformed (Type II) allowing statistical analysis to be 

undertaken. When phosphorus concentrations were analysed over the entire 

sample period (Figure 3.4-13), they were found to be significantly higher in the 

sediment from the conventional treatment compared to both conservation 

treatments (p=0.012). However, seasonal comparison of treatment means showed 

no significant differences in phosphorus concentrations. 
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Figure 3.4-13 Loddington: sediment associated phosphorus concentration. Letters 
denote significant differences. 

Phosphorus loadings associated with the sediment were statistically analysed 

over the entire sampling period and seasonally for differences between treatment 

means. There were no significant treatment differences in phosphorus loads at 



  

- 78 - 

either temporal scale. The mean load of phosphorus in the sediment ranged 

between 5 and 31g ha-1 for the three treatments. 

Potassium 

The results of potassium concentration in the sediment were normally distributed 

with equal variance. When statistically analysed over the entire sampling period, 

there were no significant differences between treatment means. The mean 

concentration of potassium in the sediment did not exceed 5500 mg kg-1 from any 

of the treatments (Table 3.4-6). The treatment means were also compared across 

the seasons; the treatment means did not significantly differ.  

The potassium loading in the sediment was transformed (Type II) to allow 

ANOVA to be carried out, as the original data was not normally distributed. 

Statistical analysis over the entire sampling period and on a seasonal basis 

showed no significant differences between treatment means. The mean loading of 

potassium for all treatments can be found in Table 3.4-6 

Table 3.4-6 Loddington: overall mean sediment potassium over the entire sampling 
period 

Treatment Concentration (mg kg-1) Loading (g ha-1) 

Conventional 5490 17.7 

SOWAP 5483 110.5 

Farmer’s Preference 5019 13.4 

3.4.1.3.3 Carbon Loss 

 Soil lost from the field erosion plots was collected and analysed for total organic 

carbon concentration and total load. Carbon concentration and load could only be 

analysed over the entire sampling period and not on a seasonal or tank clearance 

basis due to insufficient sediment being retained in the collection tanks for 

carbon analysis.  

Carbon concentrations in the sediment were normally distributed and were 

analysed using analysis of variance. No significant difference between treatment 



  

- 79 - 

means was found overall. The loading of carbon in the eroded soil had to be 

normalised (Type I). Statistical analysis showed no significant difference 

between treatment means. The mean carbon concentration and load for all 

treatments are presented in Table 3.4-7. 

Table 3.4-7 Loddington: overall mean sediment carbon over the entire sampling 
period 

Treatment Concentration (m g kg-1) Loading (g ha-1) 

Conventional 46900 99.34 

SOWAP 33600 154.23 

Farmer’s Preference 34000 114.07 

3.4.1.4 Additional analysis 

Additional analyses were carried out on the sediment generated from the field 

erosion plots, including organic matter content and particle size. Additional field 

soil properties and surface characteristics were also quantified with 

measurements taken adjacent to and within the field erosion plots to give 

supporting information for observed treatment differences. These have been 

referred to previously in section 3.3.2.  

3.4.1.4.1 Correlations 

Utilising data from the entire sampling period the volume of runoff and mass of 

eroded soil were correlated against each other to identify if a relationship existed. 

A simple correlation of normalised (both Type I) runoff and soil loss data 

showed a significant positive relationship (r=0.94), therefore, as runoff increased 

so did the amount of soil lost (Figure 3.4-14). 

Sediment was analysed for soil particle size (texture) and organic matter content. 

These results were then correlated to sediment concentration of nutrients and 

carbon to identify possible mechanisms of loss. No significant relationships were 

found. Correlations were also carried out between runoff- and sediment-
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associated nutrients and carbon in relation to a variety of parameters, the results 

of which are presented in Table 3.4-8. 

Correlation: r = 0.94
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Figure 3.4-14 Loddington: correlation between normalised (Type I) runoff volume 
and soil loss (n = 59, p<0.05) 

Variables Runoff Soil Loss Suspended 
Sediment 

S-O.M. 
% 

S-Silt % 

Runoff n/a 0.94 0.47 x -0.64 

Soil Loss 0.94 n/a 0.40 x x 

R-Nitrogen conc. x x x x x 

R-Phosphorus conc. -0.39 -0.34 x x x 

R-Potassium conc. x 0.32 x x x 

R-Organic Carbon conc. x 0.30 x x -0.52 

S-Nitrogen conc. x x x 0.73 x 

S-Phosphorus conc. x x x x x 

S-Potassium conc. x x x x x 

S-Organic Carbon conc. x x x x x 

S-O.M. % x x 0.47 n/a x 

S-Sand % x x x x n/a 

S-Silt % -0.64 x -0.84 x n/a 

S-Clay % x x 0.61 x n/a 

Table 3.4-8 Loddington: table of significant correlations (p<0.05). S- before a 
variable denotes it is associated with the sediment e.g. S nitrogen is the nitrogen 
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associated with the sediment. R- variable associated with the runoff. conc. = 
concentration. x = not significant. No signifcant correlations existed in relation to 
sand and clay content. 

3.4.1.4.2 Field Soil Properties 

The soil properties which were measured were soil particle size (texture), organic 

matter content, total organic carbon, moisture content (gravimetric and 

volumetric) and bulk density. These properties were measured biannually in the 

spring and autumn for each treatment. The properties have been measured in 

order to explain any observed differences in runoff volume and soil, nutrient and 

carbon loss. Specific explanation as to the effect these soil properties have on 

erosion can be found in section 1.2.5. 

Textural Analysis 

It is expected that an increase in clay content will contribute to a reduction in 

erosion and concurrent loss of nutrient and carbon due to the strong cohesive 

forces between clay particles. Soils with higher silt content have been linked to 

increased formation of surface seals or caps which would contribute to an 

increase in erosion.   

The data for percentage clay in the field soil were normally distributed with equal 

variance and were statistically analysed for difference in treatment means over 

the entire sampling period and on a seasonal basis. Over the entire sampling 

period there was a significant difference between treatments (p<0.001). The clay 

content of soil from all 3 treatments was different with the lowest content from 

the conventional treatment and the highest from the Farmer’s Preference 

treatment (Figure 3.4-16). When compared seasonally differences in treatment 

means were also significant (p<0.01). Clay content was lowest for the 

conventional treatment for all four seasons, but the Farmer’s Preference 

treatment had the highest clay content only in the first and fourth season (Figure 

3.4-15).  
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The percentage silt data were not normally distributed and so had to be 

transformed before analysis of variance could be carried out. Statistical analysis 

of the normalised (Type III) data over the entire sampling period (Figure 3.4-16), 

showed that percentage silt in the soil from the conventional treatment was 

significantly lower than from both conservation treatments, and that silt content 

on the Farmer’s Preference treatment was significantly higher than the SOWAP 

treatment (p<0.001).  Treatment means were compared seasonally, but there were 

no significant differences.  
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Figure 3.4-15 Loddington: clay content in field soil. Letters indicate significant 
differences 
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Figure 3.4-16 Loddington: overall mean clay content (left) and silt content (right) 
in field soil. Letters indicate significant differences.   

Organic Matter 

The presence of organic matter is expected to increase aggregate stability and 

reduce seal and crust formation, contributing to a reduction in erosion. Soil 

organic matter is expected to influence nutrient balances and is a source of 

organic carbon.  
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Figure 3.4-17 Loddington: organic matter in field soil. Letters indicate significant 
differences  

The organic matter results were normally distributed with equal variance, 

allowing statistical analysis to take place. Results were compared over the entire 

sampling period (Figure 3.4-17) where the soil organic matter content of the 

conventional treatment was found to be significantly lower than the SOWAP 

treatment only (p=0.03). Comparison between treatment means was also carried 

out on a seasonal basis, however, no significant differences were found. 
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Moisture Content 

Moisture content has been linked to the resistance to raindrop impact and 

infiltration rates. It is expected that differences between treatments may help 

explain observed erosion results. Soil moisture content was measured in two 

ways. The first, gravimetric moisture content represents the wetness of a soil i.e. 

the mass of water per mass of soil. The second, volumetric moisture content also 

represents soil water content as the volume of water per volume of soil. 

The mean gravimetric moisture content was compared between treatments over 

the entire sampling period and across seasons. At both temporal scales there were 

significant differences between treatments (p<0.001), where gravimetric moisture 

content was the lowest for the conventional treatment compared to both 

conservation treatments. Season four and the overall means showed all three 

treatments were significantly different from one another (Figure 3.4-19). Only in 

season 2 (October 2004 to March 2005) were significant differences not found 

(Figure 3.4-18).  

Analysis of volumetric moisture content was done for the entire sampling period 

and across seasons.  At both scales significant treatment differences were found. 

Over the entire sampling period volumetric moisture content was found to be 

significantly lower for the conventional treatment compared to the Farmer’s 

Preference treatment (p=0.025). When compared seasonally, significant 

differences were found in all seasons except for the second season (p<0.001). 

Graphical output of these results can be found in Figure 3.4-20 and Figure 

3.4-19. 
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Figure 3.4-18 Loddington: gravimetric moisture content of field soil. Letters 
indicate significant differences. 
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Figure 3.4-19 Loddington: overall means of moisture content, gravimetric (left) 
and volumetric (right). Letters indicate significant differences. 
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Figure 3.4-20 Loddington: volumetric moisture content of field soil.  Letters denote 
significant differences. 

Bulk Density 

It is expected that soils with a higher bulk density will have decreased infiltration 

rates and impeded drainage, contributing to overland flow. The results of bulk 

density in the field soil were normally distributed with equal variance. Means 

were statistically analysed over the entire sampling period, and there were no 

significant differences between treatments. However analysis on a season basis 

showed significant differences in bulk density between the treatments in 3 out of 

the 4 seasons (p=0.02). In the first season, soil bulk density was lowest for the 

Farmer’s Preference treatment compared to the other two. In season 3, May to 

August 2005, soil bulk density was significantly higher for the conventional 

treatment compared to both conservation treatments. In the last season, bulk 



  

- 87 - 

density was again highest for the conventional treatment, but only when 

compared to the SOWAP treatment (Figure 3.4-21).  
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Figure 3.4-21 Loddington: bulk density in field soil on a seasonal basis. Lettering 
indicates significant differences 

Total Organic Carbon 

Total organic carbon (TOC) has been shown to have positive relationships with 

aggregate stability and reducing erosion.  The data on TOC in the field soil were 

normally distributed, with equal variance allowing analysis of variance to 

undertaken. Means were compared over the entire sampling period where the 

organic carbon content of soil from the conventional treatment was significantly 

lower than both conservation treatments (p=0.01). This was also the case when 

means were compared on a seasonal basis (p<0.001); organic carbon content was 

lowest from the conventional treatment compared to both conservation 

treatments except in season four where no significant differences were found 

(Figure 3.4-22). 
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Figure 3.4-22 Loddington: organic carbon content of field soil on a seasonal basis. 
Lettering indicates significant differences 

Field Soil Surface Characteristics 

Soil Cover 

Soil cover was assessed by measurements of the percentage of bare or exposed 

soil, the percentage residue, weeds and stones. The presence of any surface cover 

physically protects the soil surface and aggregates from direct rainfall impact, 

minimising soil detachment. It is therefore expected that an increase in cover will 

contribute to a reduction in erosion. The results of which will be presented in the 

following text. 

The percentage of bare soil was statistically analysed over the entire sampling 

period. No significant treatment differences where found. However, when 

treatment means were compared on a seasonal basis, there was a significant 

difference between treatments (p<0.001), but only in the second season (October 

2004 to March 2005), where the conventional treatment had significantly less 
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percentage bare soil (more ground cover) in comparison to both conservation 

treatments (Figure 3.4-23). 
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Figure 3.4-23 Loddington: percentage bare soil. Lettering indicates significant 
differences 

The results of percentage residue cover were not normally distributed and so 

were transformed (Type II) to allow ANOVA to be carried out. When the results 

were analysed for differences between treatment means over the entire sampling 

period, none were found. However, when compared seasonally, significant 

differences between treatments were found (p<0.001), but only during season 

two; where all treatments differed significantly, as shown in Figure 3.4-24. 

The percentage weed cover was analysed over the entire sampling period and on 

a seasonal basis; there were no significant differences between treatment means 

at either temporal scale. The mean weed cover on all three treatments ranged 

from 3.7 and 5.0 percent. 
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Figure 3.4-24 Loddington: percentage residue cover. Lettering indicates significant 
differences 

The percentage of surface cover from stones was measured and statistical 

analysis was carried out over the entire sampling period where no significant 

difference between treatment means was found. When compared seasonally there 

were significant differences between treatments in the second and last season 

(p=0.01). During the second season the percentage of stones was significantly 

less on the conventional plots compared to the Farmer’s Preference treatment. In 

the last season stone percentage was the highest for the conventional treatment 

and lowest for the SOWAP conservation treatment (Figure 3.4-25). 
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Figure 3.4-25 Loddington: stone cover percentage. Lettering indicates significant 
differences 

Surface Roughness 

It is expected that an increase in surface roughness will reduce the generation of 

overland flow and loss of sediment. The results of surface roughness were 

normally distributed and were analysed over the entire sampling period. The soil 

surface on the Farmer’s Preference plots was significantly rougher than the other 

two treatments (Figure 3.4-26). When compared seasonally there were no 

significant differences between treatments. There were no clear patterns of 

surface roughness decline over time. 
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Figure 3.4-26 Loddington: soil surface roughness. Lettering indicates significant 
differences 

3.4.2 Tivington 

3.4.2.1 Hypothesis to be tested 

The mean runoff, soil loss and associated nutrient and carbon losses over all tank 

clearances will be higher from the conventionally tilled plots in comparison to 

the conservation treatments (SOWAP and Farmer’s Preference). 

3.4.2.2 Runoff  

3.4.2.2.1 Runoff volume 

The volume of runoff generated from the field erosion plots was measured and 

treatments compared. The data were not normally distributed, so were 

transformed (Type I) to allow analysis of variance to be undertaken. Analysis 

was carried out on the overall mean runoff volume. No statistically significant 

differences were found between treatments (Figure 3.4-27). Despite this there 

appears to be a trend with runoff volumes from the SOWAP treatment being 

lower than the other two treatments. This was trend was reflected during season 

one and three (Figure 3.4-27). However, when the data were compared 

seasonally there were no significant differences between treatments. Analysis 

over all tank clearances also produced no statistically significant differences 

between treatments. 
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Figure 3.4-27 Tivington: runoff volumes for each season and overall. Letters 
indicate significant differences. 
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Figure 3.4-28 Tivington: runoff 
volume for each erosion plot and 
the combined cumulative results 
for each season (above) and 
overall (left)  

Treatments: 

C=conventional 

S=SOWAP  

F=Farmer’s Preference. 
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The cumulative results for each treatment over the entire sampling period and for 

each season are presented in Figure 3.4-28. The graphs show the variation 

between plots of the same treatment. Variation was found for all treatments. The 

least volume of runoff was generated during the first season, accounting for only 

1.3% of the total runoff generated. The majority of runoff was generated during 

season 2, accounting for over 62% of the total. This was particularly true for both 

conservation treatments, although the conventional treatment generated similar 

amounts for both the second and third season. Table 3.4-9 presents the relative 

percentages of runoff contributed by each treatment and in each season, 

compared to the total volume of runoff generated. The increase in generated 

runoff during season two is most likely due to the increased amount of rainfall 

received, as shown in Figure 3.4-29. 

Table 3.4-9 Tivington: relative percentage of overall cumulative results from each 
treatment and for each season compared to the total runoff generated. 

% Conventional SOWAP Farmer’s Preference Total 

Season 1 0.43 0.40 0.48 1.32 

Season 2 17.87 18.49 25.95 62.31 

Season 3 16.88 6.20 13.29 36.37 

Total 35.19 25.09 39.73 100.00 
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Figure 3.4-29 Tivington: precipitation data for each season. The data shown 
represents rainfall from installation to removal of the field erosion plots. Floating 
numbers above each season indicate total rainfall (mm) received for that period of 
time. 

3.4.2.2.2 Nutrient Loss 

Runoff generated from the field erosion plots was analysed for nutrient 

concentrations and total load. Loads were a function of the generated runoff 

volume. The nutrients analysed were nitrogen, phosphorus and potassium. Each 

nutrient will be addressed separately in the following text. 

Nitrogen 

Soluble nitrate was measured in the runoff to indicate nitrogen concentration and 

total load. Both the nitrogen concentration and load in the runoff were not 

normally distributed, so were normalised (Type I) to allow ANOVA to be carried 

out. Statistical analysis of runoff nitrogen concentration and load showed no 

significant differences between any of the treatments when compared at any of 

the 3 temporal scales - over the entire sampling period, seasonally and across all 

tank clearances. The mean nitrate concentrations ranged from 1.6 to 2.0 mg l-1, 
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and nitrate loads ranged from 6.7 to 14.0 g ha-1 for the three treatments (actual 

results can be found in Table 3.4-10). 

Table 3.4-10 Tivington: overall mean nitrogen over the entire sampling period 

Treatment Concentration (mg l-1) Loading (g ha-1) 

Conventional 1.94 14.03 

SOWAP 1.59 6.66 

Farmer’s Preference 1.97 12.75 

Phosphorus 

Collected runoff was analysed for phosphorus concentration and loading. The 

results of both were not normally distributed, so a Type I transformation was 

performed. Statistical analysis of both phosphorus concentration and load 

showed no significant differences between treatments means when compared 

over the entire sampling period, seasonally or across all tank clearances. The 

mean phosphorus concentrations and loadings for the treatments ranged from 

0.11-0.28 mg l-1 and 0.74-2.60 g ha-1. Actual results are presented in Table 

3.4-11. 

Table 3.4-11 Tivington: overall mean phosphorus over the entire sampling period 

Treatment Concentration (mg l-1) Loading (g ha-1) 

Conventional 0.11 0.74 

SOWAP 0.13 0.82 

Farmer’s Preference 0.28 2.60 

Potassium 

Potassium concentrations and loads were measured in the runoff generated from 

the field erosion plots. The results were not normally distributed and so were 

transformed (Type II) to allow for statistical analysis. There were no statistically 

significant differences between treatment means for K concentrations or loads 

when compared over the 3 temporal scales - over the entire sampling period, on a 

seasonal basis or across all tank clearances. The mean concentrations of 
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potassium overall were between 9 and 15 mg l-1 and between 40 and 89 g ha-1 for 

total loads in the runoff. Actual results are presented in Table 3.4-12. 

Table 3.4-12 Tivington: overall mean soluble potassium over the entire sampling 
period 

Treatment Concentration (mg l-1) Loading (g ha-1) 

Conventional 9.05 62.98 

SOWAP 12.79 39.56 

Farmer’s Preference 14.97 88.55 

3.4.2.2.3 Carbon Loss 

The runoff generated from the field erosion plots was analysed for concentrations 

and loads of total organic carbon for each treatment. The data were not normally 

distributed, so a Type IV transformation was carried out. The results were 

analysed at three different temporal scales – for the entire sampling period, on a 

seasonal basis and across all tank clearances. Concentrations of total organic 

carbon in the runoff were compared between treatments. The lowest 

concentration was from the SOWAP treatment (5.0 mg l-1), and the highest from 

the conventional treatment (6.2 mg l-1); Farmer’s Preference has a TOC 

concentration of 5.8 mg l-1. These were the results over the entire sampling 

period. Satistical analysis showed no significant differences at any of the 

temporal scales.  
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Figure 3.4-30 Tivington: Runoff Organic Carbon loading, over entire sampling 
period. Letters denote significant differences. 
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Statistical analysis of the total loads of organic carbon in the runoff (as calculated 

from the TOC concentration and runoff volume) did show significant differences 

between treatments over the entire sampling period (p=0.046). Organic carbon 

load in the runoff was significantly higher for the conventional treatment 

compared to the conservation treatment, SOWAP (Figure 3.4-30). 

There were no significant differences between treatment means when compared 

on a seasonal basis, but this was not the case when analysed for each tank 

clearance (p=0.046). Graphical outputs of organic carbon load for all measured 

tank clearances can be found in Figure 3.4-31.  The tank clearance on the 5th 

January 2006 has been highlighted here, because of the increased loads of 

organic carbon measured at this clearance. 
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Figure 3.4-31 Tivington: Runoff Organic Carbon loading across all treatments 
(top) and the 5th January 2006 (bottom left). Floating letters and number symbolise 
significant differences between: 1= SOWAP and conventional, 2=Farmer’s 
Preference and =SOWAP and Farmer’s Preference 
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3.4.2.3 Soil Loss 

3.4.2.3.1 Sediment 

Soil losses at three temporal scales were investigated – over the entire sampling 

period, on a seasonal basis and for each tank clearance. The data were not 

normally distributed and so a Type I transformed was performed to allow 

statistical analysis.  

This statistical analysis of the sediment data showed a significant difference 

between treatments (p<0.001) when analysed over the entire sampling period.  

Soil loss was greater from the conventional treatment, but in comparison to the 

SOWAP treatment only. This pattern was also found during the second and third 

seasons, although no significant differences were found. These results are 

presented in Figure 3.4-32. 

Significant differences were found when treatment means were analysed across 

all tank clearances (p<0.001). Out of the 19 tank clearances, 10 of them showed 

significant treatment differences (Figure 3.4-33). In all cases bar one soil loss 

was highest from the conventional treatment compared to at least one of the 

conservation treatments. The one exception was during the third tank clearance, 

where soil loss was greatest from the Farmer’s Preference treatment. 

The cumulative soil loss results have been presented in Figure 3.4-34 for each 

season and over the entire sampling period. Losses are greater from the 

conventional treatment compared to both conservation treatments. The 

cumulative results also show the variation between the duplicate field plots of 

each treatment. This is the case for all treatments. 
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Figure 3.4-32 Tivington: mean soil loss for each season and overall. Letters denote 
significant differences. 

So
il 

Lo
ss

 (t
 h

a-
1 )

Clearance DateConventional SOWAP Farmer’s PreferenceConventional SOWAP Farmer’s Preference

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

01
 A

pr
 0

4

17
 M

ay
 0

4

01
 N

ov
 0

4

14
 D

ec
 0

4

08
 J

an
 0

5

22
 J

an
 0

5

15
 F

eb
 0

5

06
 A

pr
 0

5

25
 M

ay
 0

5

14
 J

ul
 0

5

13
 D

ec
 0

5

05
 J

an
 0

6

29
 J

an
 0

6

21
 F

eb
 0

6

06
 M

ar
 0

6

14
 M

ar
 0

6

29
 M

ar
 0

6

07
 A

pr
 0

6

25
 M

ay
 0

6

2
3

1
2

1
2 1

2

1
2
3

1
2

1
2

1
21

1
2
3

 
Figure 3.4-33 Tivington: soil loss across all tank clearances. Asterisks indicate 
where significant treatment differences occurred. Floating numbers symbolise 
significant differences between: 1= SOWAP and conventional, 2=Farmer’s 
Preference and =SOWAP and Farmer’s Preference 
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Figure 3.4-34  Tivington: soil loss 
(t ha-1) for each erosion plot and 
the combined cumulative results 
for each season (above) and 
overall (left)  

Treatments: 

C=conventional 

S=SOWAP  

F=Farmer’s Preference 

The majority of soil loss from the conventional treatment occurred during the 

third season, during the second season for the SOWAP treatment and both the 

second and third season for the Farmer’s Preference treatment. Table 3.4-13 

presents a breakdown of soil loss for each treatment and each season as a relative 

percentage to the total soil lost over the entire sampling period 

Table 3.4-13 Tivington: relative percentage of overall cumulative results from each 
treatment and for each season compared to the total soil loss. 

% Conventional SOWAP Farmer’s Preference Total 

Season 1 0.06 0.05 0.07 0.18 

Season 2 20.79 8.64 10.73 40.16 

Season 3 46.42 3.39 9.85 59.66 

Total 67.27 12.09 20.65 100.00 
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3.4.2.3.2 Nutrient Loss 

Eroded soil was collected from the field erosion plots and analysed for nutrient 

concentration and load. The loads were a function of nutrient concentration and 

soil loss. The nutrients measured were total nitrogen, phosphorus and potassium. 

It was not always possible to analyse the sediment for nutrient content due to 

insufficient amounts collected during tank clearances, therefore only two 

temporal scales were investigated - over the entire sampling period and for each 

season.  

Nitrogen 

The concentration of nitrogen within the eroded soil was normally distributed 

and was statistically analysed for differences between treatment means. When 

treatments were compared over the entire sampling period concentrations of 

nitrogen were significantly lower (p<0.001) from the conventional treatment in 

relation to both the SOWAP and Farmer’s Preference treatments (Figure 3.4-35). 

However, when nitrogen concentrations were analysed on a season basis, no 

significant treatment differences were found. 
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Figure 3.4-35 Tivington: Nitrogen concentration in sediment. Letters denote 
significant differences. 

The total loading of nitrogen within the sediment was also statistically analysed 

(after being normalised via a Type I transformation) over the entire sampling 

period and for each season, but no significant treatment differences were found. 
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The mean nitrogen load in the sediment ranged 10 to 17 g ha-1. Actual results are 

presented in Table 3.4-14. 

Table 3.4-14 Tivington: mean nitrogen load over the entire sampling period 

Treatment Loading (g ha-1) 

Conventional 292 

SOWAP 105 

Farmer’s Preference 158 

Phosphorus 

Eroded soil was analysed for phosphorus concentration and total load. The 

phosphorus concentrations were normally distributed, whereas the total load data 

has to be normalised (Type I). Statistical analysis of phosphorus concentrations 

over the entire sampling period showed significant differences between treatment 

means (p<0.001), with the lowest P concentration found in the sediment from the 

conventional treatment, when compared to both conservation treatments (Figure 

3.4-36). When analysed on a seasonal basis no significant treatment differences 

were found.  
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Figure 3.4-36 Tivington: Phosphorus concentration in sediment. Letters denote 
significant differences. 

No statistically significant treatment differences were found when the total loads 

of phosphorus in the sediment were compared over the entire sampling period or 

for each season. The overall mean phosphorus loads in the sediment were 86 g 
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ha-1 for the conventional treatment, and 32 and 49 g ha-1 for the SOWAP and 

Farmer’s Preference treatments, respectively.  

Potassium 

Potassium concentrations and total loads were measured in the eroded soil 

collected from the field erosion plots. The results were statistically analysed for 

treatment differences over the entire sampling period and on a seasonal basis. 

The only significant treatment differences were found in sediment-associated 

potassium concentrations over the entire sampling period (p<0.01), where the 

concentrations from the conventional plots were significantly lower than from 

either of the conservation plots (Figure 3.4-37). The results of the mean 

potassium load within the sediment are presented in Table 3.4-15. 

Table 3.4-15 Tivington: mean total potassium loads in sediment over the entire 
sampling period 

Treatment Loading (g ha-1) 

Conventional 610 

SOWAP 191 

Farmer’s Preference 302 
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Figure 3.4-37 Tivington: Potassium concentrations in sediment. Letters denote 
significant differences. 



  

- 105 - 

3.4.2.3.3 Carbon Loss 

 Eroded soil was analysed for carbon concentration and total load. Data analysis 

for individual tank clearances could not be done due to insufficient sediment 

samples generated for analysis. Over the entire sampling period and for each 

season, organic carbon concentration data were normally distributed, whereas the 

load results had to be transformed (Type I). Statistical analysis showed no 

statistically significant differences between treatment means of organic carbon 

concentration or loading within the sediment at either temporal scale. The overall 

mean results of both concentration and loads are presented in Table 3.4-16. 

Table 3.4-16 Tivington: mean carbon loss over the entire sampling period 

Treatment Concentration (mg kg-1) Loading (g ha-1) 

Conventional 24000 4497 

SOWAP 26000 1924 

Farmer’s Preference 30000 1907 

3.4.2.4 Additional analysis 

Additional analysis was carried out on the sediment generated from the field 

erosion plots, including organic matter content and particle size. Correlations 

where carried out between these factors, including runoff volume and the amount 

of soil lost. Additional field soil properties and surface characteristics were also 

quantified with measurements which were taken adjacent to and within the field 

erosion plots to give supporting information for observed treatment differences. 

These have been referred to previously in section 3.3.2.  

3.4.2.4.1 Correlations 

The volume of runoff and mass of eroded soil were correlated against each other 

to see if there was a relationship. A simple correlation of normalised (both Type 

I) runoff and soil loss data showed a significant positive relationship (r=0.81). 

Therefore as runoff increased, so did the amount of soil lost (Figure 3.4-38).  
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There were so many significant correlations that they have been presented in a 

table rather than showing the graphical outputs (Table 3.4-17).  

Variables Runoff Soil 
Loss 

Susp. 
Sed. 

S-O.M. 
% 

S-Sand 
% 

S-Silt 
% 

S-Clay 
% 

Runoff n/a 0.81 0.95 0.29 -0.48 0.54 0.36 

Soil Loss 0.81 n/a 0.87 x -0.34 0.56 x 

R-Nitrogen 
conc. 

-0.22 -0.26 -0.29 -0.30 0.49 -0.32 -0.49 

R-Phosphorus 
conc. 

x x x x x x x 

R-Potassium 
conc. 

x -0.22 x 0.49 x x x 

R-Organic 
Carbon conc. 

-0.22 -0.24 -0.20 -0.34 0.46 -0.49 -0.37 

S-Nitrogen 
conc. 

x x x 0.78 -0.69 0.33 0.76 

S-Phosphorus 
conc. 

x x x 0.77 -0.66 0.39 0.69 

S-Potassium 
conc. 

0.25 x 0.25 0.64 -0.79 0.49 0.81 

S-Organic 
Carbon conc. 

x x 0.30 0.59 -0.63 0.42 0.66 

S-O.M. % 0.29 x 0.26 n/a -0.70 0.42 0.72 

S-Sand % -0.48 -0.34 -0.51 -0.70 n/a n/a n/a 

S-Silt % 0.54 0.56 0.56 0.42 n/a n/a n/a 

S-Clay % 0.36 x 0.39 0.72 n/a n/a n/a 

Table 3.4-17 Tivington: table of significant correlations (p<0.05). S- before a 
variable denotes it is associated with the sediment e.g. S nitrogen is the nitrogen 
associated with the sediment. R- variable associated with the runoff. conc. = 
concentration. x = not significant. Suspended sediment is denoted as Susp. Sed.  
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Correlation: r = 0.81
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Figure 3.4-38 Tivington: correlation between runoff and soil loss (n=114, p<0.05) 

3.4.2.4.2 Field Soil Properties 

The soil properties which were measured were soil particle size (texture), organic 

matter content, moisture content (gravimetric and volumetric) and bulk density. 

These soil properties were measured twice a year, during spring and autumn. The 

properties have been measured to explain any observed differences found in 

runoff volume and soil, nutrient and carbon loss. More details as to why these 

soil properties were measured can be found in 1.2.5. Soil properties were 

measured in conjunction with the micro-plot field rainfall simulations. These did 

not start until the beginning of the second season, therefore soil property results 

will only be expressed for the second (Sept 04 – July 05) and third (Dec 05 – 

Aug 05) season and as an overall mean for the entire sampling period. 

Textural Analysis 

The soil clay content will influence erosion and associated nutrient loss due to 

the strong cohesive forces between clay particles. It is expected that as the clay 

content increases the risk of soil erosion and loss of nutrients will decline. As the 
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silt content increases it is expected that the risk of seal formation will increase, 

contributing to greater erosion risk. 

The results of percentage clay, silt and sand were all normally distributed with 

equal variance. Statistical analysis was carried out at two temporal scales; over 

the entire period of sampling and for each season. Significant differences 

between treatment means were found at both temporal scales for silt (p=0.01) and 

sand (p=0.03) content within the soil. Significant differences between means 

were only found over the entire sampling period for clay content within the soil 

(p=0.04), where the treatment differences were small. Graphical outputs can be 

found in Figure 3.4-39. 
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Figure 3.4-39 Tivington: Textural results from field soil samples. Letters denote 
significant differences. 
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Organic Matter 

An increase of soil organic matter is expected to have a positive relationship with 

aggregate stability and a negative relationship with the formation of surface seals 

and crusts. Consequently, as SOM increases, erosion is expected to decrease.  

The results of organic matter content in the soil were normally distributed with 

equal variance, allowing statistical analysis to be undertaken. No significant 

differences were found between treatment means over the entire sampling period 

or on a seasonal basis. Overall mean results are presented in Table 3.4-18. 

Table 3.4-18 Tivington: overall mean SOM content 

Treatment SOM content (%) SD n 

Conventional 1.83 0.35 12 

SOWAP 2.00 0.36 12 

Farmer’s Preference 1.80 0.41 12 

Moisture Content 

It is expected that any differences in moisture content may contribute to 

explaining observed erosion results, as moisture content has been linked to the 

resistance of soil to raindrop impact, and having an influence on infiltration rates.  

Gravimetric moisture content represents the wetness of a soil i.e. the mass of 

water per unit mass of soil. Statistical analysis showed that overall there was a 

significant difference (p=0.02) between the conventional and Farmer’s 

Preference means (Figure 3.4-40) in gravimetric moisture content. On a seasonal 

basis there were no treatment differences.  

The volumetric moisture content also represents soil water content, as a volume 

of water per volume of soil. Statistical analysis of the volumetric moisture 

content showed there to be no significant treatment differences when analysed 

over the entire sampling period. However, differences existed (p=0.04) between 

treatment means on a seasonal basis (Figure 3.4-41). 
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Figure 3.4-40 Tivington: Gravimetric moisture content over the entire sampling 
period. Letters denote significant differences. 
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Figure 3.4-41 Tivington: seasonal difference in volumetric moisture content. 
Letters denote significant differences 

Bulk Density 

Bulk density has been found to have a negative association with infiltration rates 

and drainage. It is expected that as bulk densities increase, runoff and subsequent 

soil erosion will also increase.  

The results of bulk density in the field soil were normally distributed, with equal 

variance, allowing statistical analysis to be undertaken. Bulk density results were 

compared between treatments over the entire sampling period and for each 

season. However, no significant differences were found at either temporal scale. 

Results are presented in Table 3.4-19. 
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Table 3.4-19 Tivington: overall mean bulk density 

Treatment Bulk density (g cm-3) SD n 

Conventional 1.32 0.36 36 

SOWAP 1.22 0.39 36 

Farmer’s Preference 1.22 0.39 36 

Total Organic Carbon 

Total organic carbon (TOC) has been shown to have positive relationships with 

aggregate stability and a reduction in erosion. The results of total organic carbon 

in the field soil were normally distributed with equal variance. When the results 

were analysed over the entire sampling period, no statistically significant 

differences were found between treatment means. When compared on a seasonal 

basis significant differences were found (p<0.01) between treatments, but only 

for the second season (September 2004 to July 2005), as shown in Figure 3.4-42. 

Mean results over the entire sampling period for each treatment were 0.94 % 

from the conventional treatment, 1.18 and 1.04 % for the SOWAP and Farmer’s 

Preference conservation treatments. 
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Figure 3.4-42 Tivington: seasonal comparison of organic carbon content in field 
soil. Letters denote significant differences 
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3.4.2.4.3 Field Soil Surface Characteristics 

Soil Cover 

Soil cover was assessed by measurements of percentage bare or exposed soil, the 

percentage of residues, weeds and stones. The presence of any surface cover 

physically protects the soil surface from direct rainfall impact, minimising soil 

detachment. It is therefore expected that an increase in cover will contribute to a 

reduction in erosion. The results are presented in the following text. 

The percentage bare soil was statistically analysed over the entire sampling 

period and for each season separately. When analysed over the entire sampling 

period, the percentage of bare soil was significantly higher (p<0.01) for the 

conventional field erosion plots in comparison to both conservation treatments 

(Figure 3.4-43). However, when analysed on a seasonal basis, no differences 

were found. 
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Figure 3.4-43 Tivington: percentage bare soil over the entire sampling period. 
Letters indicate significant differences. 

The percentage of surface residues present on the conventional plots was 

statistically lower (p<0.001) than for both conservation treatments, when 

analysed over the entire sampling period (Figure 3.4-43), but no significant 

differences were found on a seasonal basis  



  

- 113 - 

The percentage weed cover was also analysed over the entire sampling period 

and for each season. At both scales significant differences (p<0.001) in 

percentage weed cover were found between treatments (Figure 3.4-44). The 

percentage of weed cover was significantly lower on the conventional plots 

compared to the SOWAP treatment except during season one. The mean (over 

the entire sampling period) results also showed the same treatment pattern.  
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Figure 3.4-44 Tivington: Percentage soil cover from weeds. Letters indicate 
significant differences. 

Statistical analysis of the percentage stone surface cover showed no significant 

treatment differences at either temporal scale. The stone cover for all three 

treatments ranged from 1.7 to 2.3%. 

Surface Roughness 

Increases in surface roughness have been linked to a reduction of overland flow 

(volume and velocity) and loss of sediment. The roughness of the surface soil on 
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the field erosion plots was measured and statistically analysed for treatment 

differences over the entire sampling period and on a seasonal basis. Analysis 

showed that there were no significant differences between treatment means at 

either temporal scale. Mean results over the entire sampling period are presented 

in Table 3.4-20. 

Table 3.4-20 Tivington: overall mean surface roughness 

Treatment Surface roughness (%) SE n 

Conventional 5.06 0.38 51 

SOWAP 6.72 0.51 50 

Farmer’s Preference 5.76 0.53 51 

3.5 Discussion 

3.5.1 Findings in relation to the original objectives 

It is expected that slight inconsistencies may exist in the treatment results 

between site locations due to their inherent differences. These variations between 

sites should be addressed before the results are discussed in relation to the 

original objectives of this chapter. The Loddington site is located on clay (45%), 

whereas the Tivington site is a sandy clay loam (only 20% clay). As previously 

mentioned (1.2.5.2.1) clay has a positive effect on aggregate stability by reducing 

soil erodibility. The clay fraction is also associated with higher nutrient and 

carbon adsorption due to clay particles having a relatively high specific surface 

area. The soil organic matter content is 5.2% at the Loddington site and 0.8% at 

Tivington. Organic matter (1.2.5.2.2) also has a positive effect on aggregate 

stability and nutrient content. The field erosion plots at the Loddington site are 

on a more gentle slope of 3.5%, while at Tivington the slope is steeper at 7%. If 

all other factors were equal an increase in slope gradient would lead to an 

increase risk of erosion. These are important factors to consider during the 

discussion. 
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3.5.1.1 Objective one: to quantify runoff volume and soil loss under 

natural rainfall for three different soil management treatments 

Soil is an important resource which is being lost through erosion. The benefits of 

minimising soil erosion are vast but include an increase in crop productivity, 

maintenance of soil health, conservation of the biological community and 

reduction in off-site pollution of water courses.  

It was predicted in hypothesis one that runoff volume and soil loss would be 

significantly greater from the conventionally treated field erosion plots, 

compared to either or both of the conservation treatments - SOWAP and 

Farmer’s Preference. Treatment means were analysed at three different temporal 

scales; over the entire sampling period, on a seasonal basis and across the 

individual tank clearances. 

There were no significant treatment differences in runoff volume when analysed 

at all three temporal scales for both sites. Although not significant, noteworthy 

treatment differences were found at both sites. These differences were not 

consistent to site location. At Tivington, the SOWAP conservation treatment 

generated substantially lower volumes of runoff over the course of the project, 

contributing to only 25% to the total runoff generated from all treatments. 

Although this was expected, what was unexpected was that the other 

conservation tillage regime, Farmer’s Preference, generated similar volumes of 

runoff to the conventional treatment. At Loddington there were also notable 

differences between treatments. The conventional treatment generated 

substantially lower volumes of runoff compared to both conservation treatments 

when mean and cumulative results were compared over the entire sampling 

period.  

The results from both sites were unexpected as a priori reasoning would suggest 

that runoff should be greater from the conventional plots, due to the increased 

trafficking and thus compaction on this treatment, lower percentage cover to trap 
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surface water leading to runoff generation, and greater breakdown of disturbed 

aggregates by raindrop impact, leading to the formation of a less permeable soil 

surface. However, there is some evidence in the literature to show that the long-

term use of conservation tillage practices under some circumstances may actually 

enhance runoff generation (Moldenhauer et al. 1971; Lindstrom & Onstad 1984 

and Mueller et al 1984). The low level of soil disturbance in the plough layer 

(unlike conventional tillage which disturbs this layer) can lead to soil 

consolidation over time, increasing bulk density and reducing infiltration, 

resulting in higher runoff generation. Such evidence, however, was not found in 

the present study. Over the entire sampling period, there was no significant 

change in bulk density at either site, for any treatment. Significant differences 

were observed on a seasonal basis, but only at Loddington. Where differences 

existed, bulk density was significantly higher on the conventional treatment 

compared to both conservation treatments. In any case, these differences in bulk 

density were not reflected in the volumes of runoff. 

Treatment differences in generated volume of runoff could be related to changes 

in surface characteristics such as percentage cover by weeds, residues and stones. 

It was expected that the management applied to the conventional treatments 

would result in less soil cover, and a greater propensity for soil to generate 

runoff. This was found to be the case at Tivington, with the percentage bare soil 

and the surface roughness on the conventionally treated plots being either 

significantly higher or lower than one of the conservation treatments. Although 

this did not result in significant treatment differences in runoff volume, these 

changes in surface characteristics do explain the substantially higher runoff 

volumes generated from the conventional treatment. At Loddington the only 

significant difference in surface characteristics (over the entire sampling period) 

occurred in the roughness of the soil surface. Roughness was significantly higher 

on the Farmer Preference conservation treatment.  This partially explains the 

runoff trend found, but not completely. Other processes must be operating. 
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The results have shown that significant differences in surface characteristics were 

found explaining in part the notable differences between treatments in terms of 

runoff volume. However, it is still unclear as to possible reasons why differences 

in runoff volumes between treatments were not significant. It is postulated that 

the lack of significant differences in runoff volume at either site was the result of 

a) data variability, and b) an extreme event (in the case of Loddington). 

The majority of runoff volume generated from each treatment at any time interval 

was associated with high variability in the data. This was compounded by the 

fact that only 2 erosion plots were available for each treatment at each site – 

giving very high variability (Morgan 2005) and very low degrees of freedom 

when it comes to statistical testing. Significant differences may be seen if the 

experiments were to be run for a longer time period, and if more replication of 

treatments were possible. It should also be noted that man-made variability 

occurred during treatment cultivations, especially on the SOWAP plots at 

Tivington. This was through the presence of an additional tramline, which may 

have represented a preferential pathway for runoff and associated sediment. The 

consequence of this may have been an overestimation of erosion losses.  

 
 

Plate 3.5-1 Additional tramline within a SOWAP plot at Tivington 
 

Lack of treatment significance in runoff volume at the Loddington site 

specifically was also compounded by the unexpected runoff volumes from the 

conventional treatment. This was attributable to an extreme event on the 22nd 
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October 2004. The runoff volumes measured from this tank clearance (combined 

mean results from all treatments) represented 61.3% of the total runoff collected 

from all 11 clearances over the course of the entire project. The result from this 

clearance was therefore influential to the overall treatment differences 

(previously shown specific to the soil loss results). The percentage runoff volume 

generated from each treatment from this tank clearance was – conventional 19%, 

SOWAP 57% and Farmer’s Preference 24%.  The substantially lower runoff 

volumes from the conventional treatment were not expected (see previous 

reasoning) but can be explained by the uncharacteristic surface properties present 

at the time. Due to bad weather conditions at the time, ploughing on the 

conventional treatment was postponed until conditions improved. The 

consequence of this delayed field operation meant that the conventional treatment 

had significantly lower percentage area exposed as bare soil. The effect of this 

would be a lower risk of aggregate breakdown from raindrop impact, soil 

detachment and removal via runoff.  

The unexpectedly high runoff volume from the SOWAP treatment was also in 

comparison to the other conservation treatment (Farmer’s Preference). This can 

be explained by a substantially smoother soil surface and a significantly lower 

percentage of surface residues. Although both conservation treatments had 

surface residues during this season, the SOWAP treatment had been sown with a 

cover crop of mustard, which had only just started to emerge at the time of the 

rainfall event. The effect of both a reduction of surface roughness and residues 

would be a reduction in resistance to water flow and therefore an increase of 

overland flow. 

Treatment differences in soil loss were site dependant. At Loddington a 

significant difference (p<0.01) was found during only one out of the eleven tank 

clearances but not at any of the other temporal scales (overall or by season). 

During this one tank clearance (22nd October 2004) soil loss was significantly 

higher from the SOWAP conservation treatment compared to the two other 
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treatments. This reflected the results and relationships to soil and surface 

conditions found for runoff volume generation (as stated previously). The mass 

of soil collected from this tank clearance represented 87% of the total soil mass 

generated during the entire project (11 clearances in total). It was found that the 

results obtained from this one tank clearance were significantly influential to the 

overall results. During this clearance, soil loss from the SOWAP treatment was 

significantly greater than both the conventional and the Farmer’s Preference 

treatment. The increase in soil loss from the SOWAP treatment could not be 

explained in terms of soil properties measured in autumn 2004. Instead the tank 

clearance results can be explained in terms of observed differences in surface 

characteristics measured at the same time of the tank clearance. These have 

already been described above in relation to runoff losses and are applicable to 

these soil losses. 

At Tivington soil loss results were significantly different (p<0.001) between 

treatments when compared over the entire sampling period and across all tank 

clearances, but not on a seasonal basis. In total, 19 tank clearances were 

undertaken at Tivington, and out of these, 10 showed significant treatment 

differences. Of these, nine tank clearances showed soil losses to be significantly 

greater from the conventional treatment compared to at least one of the 

conservation treatments. This was also the case when mean results were 

compared over the entire sampling period. The increase in soil loss from the 

conventional treatment compared to at least one of the two conservation 

treatments at Tivington can be explained by surface characteristics and soil 

properties measured over the same time period. Significant differences were 

found overall in the percentage of bare soil, residue and weed cover on the 

conventional treatment compared with at least one conservation treatment. The 

percentage of surface cover by weeds was significantly less on the conventional 

plots during the second and third season, as well as overall compared to both 

conservation treatments. Although the presence of weeds is deemed unfavourable 
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in terms of crop quality, it has a positive effect on soil conservation and erosion 

control. Weed growth is a form of soil cover and aids in the reduction of soil loss 

(Laflan & Colvin 1981). The percentage of soil surface cover from residues was 

also significantly less on the conventional treatment at Tivington compared to 

both conservation treatments. Unsurprisingly the percentage of exposed or bare 

soil was significantly higher on the conventional plots compared to both 

conservation treatments overall. This greater area of exposed soil on the 

conventional plots increases the exposure of soil to raindrop impact. The 

consequences of this can be an increase in aggregate breakdown, soil 

detachment, soil particle redistribution to form seals resulting in impeded 

drainage and an increase in runoff. An increase in runoff or overland flow will 

transport previously rainsplash-detached soil particles away from the system, as 

well as detaching more particles from the soil surface by surface flow, resulting 

in soil loss by erosion. Complementing the presence of weeds was the 

significantly higher content of organic carbon in the soil from the SOWAP 

treatment compared to the conventional treatment during the second season. The 

same treatment trend was found over the entire sampling period but the results 

were not statistically significant. An increase in organic carbon has been shown 

to reduce aggregate breakdown and soil detachment.  

There was an anomaly to this pattern of higher soil losses from the conventional 

treatment. The third tank clearance on 1st November 2004 at Tivington was the 

only tank clearance where soil loss was greatest from the Farmer’s Preference 

plots compared to both conventional and SOWAP treatments. To understand why 

this anomaly occurred, statistical analysis was carried out on the measurements 

taken as close to the November 2004 tank clearance as possible. Initially 

treatment differences in surface characteristics were investigated. No significant 

differences were found, indicating that other processes were taking place. This 

led to the analysis of soil samples taken in the autumn of 2004 for differences in 

soil properties between treatments. Analysis showed significantly higher contents 
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of silt (p=0.002) for the Farmer’s Preference treatment. The implication of this is 

increased risk to soil erosion due to aggregate breakdown, redistribution of silt on 

the surface leading to surface sealing. The consequence of this is the creation of 

an impermeable surface layer, limiting infiltration and leading to increased 

runoff. The increase in aggregate breakdown and runoff generation would result 

in the transportation of eroded material downslope. This would explain why soil 

losses were significantly higher from the Farmer’s Preference treatment during 

the November 2004 clearance. 

The application of conservation tillage at both sites (clay and sandy clay loam) 

did not significantly affect the volume of runoff generated, under different 

cropping regimes. However, the mass of soil eroded was affected by the tillage 

practice employed. At Loddington (clay), soil loss was increased with the use of 

the SOWAP conservation management practice. At Tivington (a sandy clay 

loam), the SOWAP based conservation tillage always minimised soil loss 

significantly. At both sites, results could be linked to treatment induced changes 

in surface characteristics including surface cover, type of cover and surface 

roughness. Soil loss results from Tivington could also be linked to soil 

properties, specifically to soil texture and organic carbon content.  

It has been shown that tillage affects erosion in different ways depending on a 

site’s risk to erosion. However, what has not been discussed is the context of 

these results in terms of sustainability. As said previously both sites have shown 

treatment differences in soil loss, it is important to relate these losses to yearly 

formation rates. Although losses were not calculated strictly on a yearly basis, 

losses were measured over known number of days. Therefore, a yearly figure 

could be calculated and compared to the rate of tolerable loss of 2 t ha-1 yr-1 

(Morgan 2005). It was found at Loddington, rates of soil loss from all treatments 

were below tolerable levels, ranging between 0.008-0.120 t ha-1 yr-1. At 

Tivington, it was found that soil loss from the conventional treatment was above 

tolerable levels, ranging between 0.2-3.5 t ha-1 yr-1. The adoption of either 
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conservation tillage treatment (SOWAP or Farmer’s Preference) resulted in 

reductions in soil losses to below tolerable levels at both sites. This raises the 

question of whether a change in tillage regime is necessary to reduce soil erosion 

on sites which are not at risk of high erosion rates. 

3.5.1.2 Objective two: to quantify nutrient and carbon losses associated 

with runoff and soil loss for three different soil treatments 

Hypothesis two states that losses of carbon and nutrients (nitrogen, phosphorus 

and potassium) associated with the runoff and sediment would be greater from 

the conventional treatment compared to at least one of the conservation 

treatments. Nutrient and carbon results will be discussed separately in the 

following text. 

3.5.1.2.1 Nutrient Loss 

The loss of nutrients from the soil environment was considered important, with 

on-site and off-site consequences. Loss of nutrients from the soil environment 

can lead to changes in crop productivity, soil ‘health’ and the biological 

community affecting aggregate stability. The off-site implications include 

eutrophication of marine and freshwater bodies and contamination of drinking 

water. 

Differences between treatments in terms of nutrient concentration and load 

associated with the runoff and soil loss were site specific. At Loddington 

significant treatment differences in nutrient loss were found in the runoff and 

sediment whereas at Tivington, significant treatment differences were only found 

associated with the sediment. 

At Loddington, significant treatment differences in nutrient loss were only 

observed for nitrogen and phosphorus but not for potassium. Loss of soluble 

nitrogen (measured as nitrate) was significantly higher from the Farmer’s 

Preference treatment compared to both conventional and SOWAP treatments. 

This only occurred during season one. This unexpected result could not be 
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attributable to the surface characteristics or soil properties present at that time.  

This led to analysis of surface core samples taken at the time for content of total 

nitrogen. Although not significant the results of total N in the surface (0-5cm) 

soil samples show that N concentrations were substantially higher from the 

Farmer’s Preference treatment in comparison to the other two treatments. This 

higher concentration of N in the field soil would lead to increased N 

concentration available to be lost via runoff.  

Loss of soluble phosphorus (measured as phosphate) was significantly higher 

from the conventional treatments compared to both conservation treatments. This 

was for both mean (over the entire sampling period) P concentration and total 

loading (calculated as a function of runoff volume). This significant loss from the 

conventional treatment could be explained by the significantly lower levels of 

clay present within the field soil in comparison to the conservation treatments. As 

a result the overall adsorptive capacity and aggregate stability of soil from the 

conventional treatment would be substantially reduced. Therefore, less P is able 

to be retained within the soil and as a result available in solution.  

As stated previously there was no significant treatment differences in nutrient 

concentrations or loadings associated with the runoff at Tivington. However, 

concentrations of all three nutrients were found to be significantly lower in 

sediment from the conventional treatment compared to both conservation 

treatments. Although not significant the mean (over the entire sampling period) 

calculated load (a function of soil loss) of nutrients lost in the eroded sediment 

were also substantially greater from the conventional treatment compared to both 

conservation treatments. 

The significantly low concentrations and substantially higher loads of sediment 

associated N, P and K were related to both soil properties and surface conditions. 

Firstly, the clay content of soil from the conventional treatment was significantly 

less than for the conservation treatments. Therefore it would be expected that 

higher concentrations of nutrients would be retained due to a) the increase 



  

- 124 - 

adoptive capacity, and b) increase in aggregate stability, both associated with 

clay particles. However, the latter would suggest that the total loading would also 

be lower due to decreased erodibility. This was not reflected in the loading 

results, but can be explained by the surface characteristics present on the 

conventional treatment. It was found that the percentage of bare soil on the 

conventional treatment was significantly higher and surface roughness lower on 

the conventional treatment. This suggests that the risk to erosion could be higher 

on this treatment. This was supported by the soil loss results. 

Although the concentration of sediment associated nutrients lost was reduced by 

the use of conventional tillage, the total mass of sediment entrained nutrients lost 

increased by this form of tillage. The latter has on-site implications for the 

farmer, forcing increased amounts of fertilisers to be added to the field to 

maintain crop productivity and yield. 

It is important to put these nutrient losses in context. Threshold values of 

nitrogen as nitrate, in drinking water are 50mg l-1 for the UK and as low as 25 mg 

l-1 for Finland (Journeaux 2003). The results from this current research showed 

that concentrations of nitrate did not reach either of these threshold limits, 

although it should be noted that a substantial amount of nitrate is lost from 

agriculture via leaching due to the high solubility of nitrate. Therefore even 

though treatment differences were found (at Loddington only) in runoff 

associated nitrogen, the levels found do not pose a threat to drinking water. 

However, the results from Loddington (not Tivington) from all treatments do 

exceed the environmental threshold limit set by New Zealand of 3.2 mg l-1 of 

nitrate (Journeaux 2003). 

Loss of soluble phosphorus also has implications for drinking water quality. 

Guidelines state that concentrations of P that are allowed in drinking water are 

2.2 mg l-1 (DWI 2003). Results obtained from this current research showed that 

loss of soluble P did not exceed this guideline level at either site, indicating that 

although treatment differences did exist in soluble nutrient loss, the adoption of 
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different soil managements in the mitigation against this loss in terms of drinking 

water quality is not necessary. However, work by Sharpley & Smith (1990) has 

shown that concentrations of soluble P of 10 ug l-1 are sufficient to cause 

accelerated eutrophication. The soluble P losses from both sites for all treatments 

exceeded this level, making adoption of conservation tillage a useful tool in the 

mitigation against eutrophication from agricultural runoff.  

Although not presented in the main text, enrichment ratios were calculated for 

each treatment, using the mean sediment concentration of each nutrient within 

the eroded sediment against the concentration found within the field soil (means 

were calculated over the entire sampling period). It was found that all enrichment 

ratios from all treatments were above 1, indicating that a higher concentration of 

nutrients were lost than were present within the field. This occurred for 

phosphorus and potassium loss at both sites, and nitrogen loss at Loddington 

only. The results also showed that at Loddington enrichment ratios where higher 

for all nutrients in sediment from the conventional treatment compared to both 

conservation treatments. However, at Tivington this was only the case for 

nitrogen while enrichment ratios for both phosphorus and potassium were lowest 

from the conventional treatment. This implies that the way in which nutrients are 

lost from the soil system vary not only with different soil management regimes 

but with site location as well due to differences in soil properties including 

texture. Results indicate that the adoption of conservation treatments can reduce 

loss of sediment associated nutrients on sites less at risk to erosion but may 

enhance loss on sites with a higher risk to erosion. This has on-site implications 

for farmers needing to apply additional fertilisers to the field to maintain crop 

productivity and yield and off-site effects contributing to water pollution 

including eutrophication. 
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3.5.1.2.2 Carbon Loss 

The loss of carbon from the soil environment was deemed important due to the 

on-site implications of such a loss. Loss of carbon can lead to a decrease in 

aggregate stability, increase in surface capping and sealing and a general decline 

in crop productivity, soil structure and substrate for microbial communities.  

There were no significant differences between treatments in the concentration or 

loads of organic carbon associated with eroded sediment, at either site. No 

significant differences were found in carbon concentration associated with the 

runoff at either site location. However, significant treatment differences were 

found in the loading of organic carbon associated with the runoff at Tivington, 

but not at Loddington. Mean carbon load in the runoff (over the entire sampling 

period) was significantly greater from the conventional treatment compared to 

the SOWAP conservation treatment.  

The observed results in carbon losses could not be related to the inherent soil 

properties, but were related to the surface characteristics, specifically the 

percentage bare soil. The lack of cover on the soil surface on the conventional 

treatment would have resulted in increased risk to soil detachment from rain drop 

impact. As a consequence, the soil surface would be more prone to surface 

sealing, so infiltration would be reduced.  The overall outcome would be an 

increase in runoff generation. This was the case, as previously shown in relation 

to treatment difference of runoff volume. Consequentially, higher amounts of 

soluble carbon could be easily transported via runoff. The same pattern of loss 

was also found with sediment associated carbon. Although not significant, a 

substantially greater mass of sediment associated carbon was also lost from the 

conventional treatment at Tivington. 

The ability of soil to sequest carbon is important for global issues of climate 

change and for a farmer to maintain crop productivity (Charman & Murphy 

2000) and yield. Smith (2004) estimates that rates of carbon sequestration range 



  

- 127 - 

between 0.3-0.8 t C ha-1 yr-1.  Although not presented in this current research it 

was observed that the total cumulative mass of carbon lost (combined mass of C 

loss from runoff and sediment) was below estimated sequestration rates. This 

was the case for all treatments at both sites. Site differences in carbon lost were 

apparent. Tivington lost substantially (an order of magnitude) greater amounts of 

C than Loddington. Possibly due to the increased risk to erosion at Tivington and 

a clay content 25% lower than that of Loddington.  

The adoption of conservation tillage has shown that at Loddington (clay) this soil 

management treatment does not significantly affect the loss of runoff- or 

sediment-associated organic carbon. However, at Tivington, (a sandy clay loam) 

conservation soil management practices can minimise the loss of runoff-

associated organic carbon, not by reducing carbon concentration, but by lowering 

volume of runoff generated. This supports the findings found by Owens et al. 

(2002) in relation to soil loss.  

3.5.2 Implication of this study 

This work has shown the effects of different soil management treatments on 

water, soil, nutrient and carbon losses. It also highlights that these effects are site 

specific, due to differences in risk to erosion, as a result of changes in soil 

texture, organic matter and slope gradient. Consequently, universal conclusions 

regarding the impact of conservation tillage on soil, water, nutrient and carbon 

losses are not possible.  

This study has reaffirmed the significance of soil properties and surface 

characteristics on the loss of water, soil and associated nutrients, but that the 

relative importance of soil properties and surface characteristics can be site 

specific, depending on soil texture, cropping regimes, topography and 

meteorological conditions. This implies that management systems affecting these 

properties and characteristics must be designed to be site specific. 
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The present work has also shown the difficulties associated with data generated 

from field scale erosion plots. Natural variability over small spatial scales in 

terms of rainfall received, soil properties and surface characteristics, plus the 

man-made variability due to treatment application during cultivation operations 

(e.g. presence of tramlines within field erosion plots) result in highly variable 

data in terms of runoff and soil loss. Limited replication adds to the margin of 

error associated with such high levels of variability. The observations obtained 

were determined by a set of highly complex hydrological and soil variables, 

which have been taken into account in this study. This research has highlighted 

this complexity, although an attempt has been made to use data to explain the 

results generated. The outcome is a unique data set of soil, water and nutrient 

losses in the UK under different soil management practices. 

3.5.3 Future research recommendations 

Increasing the frequency of sampling is recommended, so that data can be 

collected on an event basis rather than as soon as logistically possible after an 

event or a series of events. Sampling during an event would allow better 

assessment of the loss of water, sediment, nutrients and carbon over time, whilst 

simultaneously taking into account the intensity, kinetic energy and volume of 

rainfall. This resolution of monitoring requires considerable expenditure on 

instrumentation (e.g. automated flumes and sediment samplers), which was not 

available to the present study. 

3.6 Conclusion 

The main findings of this study were that the application of conservation tillage 

did not result in significant differences in runoff volume compared to 

conventional practices at either site. Differences in soil loss between treatments 

were site specific; at Loddington soil loss was highest from the SOWAP 

treatment and at Tivington in the majority of cases, soil loss was greatest from 

the conventional treatment, compared to at least one of the conservation 



  

- 129 - 

treatments. Where significant differences existed these could be explained by 

inherent surface characteristics (and soil properties at Tivington). The presence 

of soil cover was of specific importance in the reduction of soil erosion at both 

sites. 

Losses of soluble nutrients can be minimised through the application of 

conservation tillage due to the increase in clay and associated adsorptive 

capacity. However, based on the results from this study, success may only be 

possible on clay soils, as different tillage treatments on a sandy clay loam soil 

appear to have little impact on runoff associated nutrient losses. Sediment-

associated nutrients can also be reduced through the introduction of conservation 

based soil management due to changes in soil properties, specifically clay 

content. However, this only applied to clay soils. The adoption of conservation 

tillage on the sandy clay loam soil used in this study resulted in an increase in 

sediment-associated nutrient loss. This was also attributable to the changes in soil 

texture. 

At Loddington, the loss of organic carbon associated with runoff and soil loss 

was not significantly altered by the adoption of conservation tillage practice 

compared to a conventional treatment. At Tivington, however, the 

implementation of conservation based management (specifically SOWAP) did 

reduce runoff-associated loss of organic carbon. This was related to a reduction 

of runoff generated from this treatment as a result of a lower percentage bare soil. 

In conclusion, the application of conservation soil management at a field scale 

under natural conditions does not always reduce soil and water losses nor the 

associated losses of nutrients or carbon. The results observed appear to be related 

to site specific conditions, which vary in space and time. The results from this 

study also indicate that surface characteristics are the most influential factors in 

the initiation of erosion on soils with a high clay content (>40%), higher organic 

matter and gentler gradient. The combination of surface characteristics and soil 

properties determine the erosion rates on a soil with a lower clay content, lower 
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organic matter and greater gradient. Irrespective of soil type nutrient losses are 

controlled by changes in soil properties, specifically the change in adsorptive 

particles specifically from clay content. Carbon loss does not appear to be 

influenced by soil properties or surface characteristics directly, but instead by the 

volume of runoff generated from any given treatment.  
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4 Micro-plot scale erosion assessment – rainfall simulations 

4.1 Introduction 

Monitoring and measurement of soil erosion is important in the assessment of the 

effects agriculture has on the environment. Runoff plots are just one of the many 

devices to generate data on erosion rates. There are many permutations of 

runoff/erosion plots, related to plot size, plot boundaries (absence/presence and 

material used) and the use of natural or artificial rainfall. Large erosion plots 

(>100m2) with collection systems installed to retain eroded material and runoff 

are the most direct way of assessing field erosion, and probably give the most 

reliable results on soil loss per unit area (Hudson 1995; chapter 3). They are 

widely used in soil erosion research. Runoff plots are generally expensive, time 

consuming and reliant on natural rainfall events which are inevitably variable and 

unrepeatable in space and time. Information and results relating to field scale 

erosion plots used in the present research can be found in chapter 3. The 

identified constraints and limitations of field scale erosion plots have lead to the 

use of micro-erosion plots (≈1m2) in conjunction with a rainfall simulator, 

allowing controlled experiments to be replicated quickly and inexpensively.  

Micro-erosion plots in conjunction with rainfall simulators allow the researcher 

to create a storm event of a specific duration and intensity. Simulations can be 

repeated numerous times, shortening the time span required to carry out 

replicated data collection. Advances in the type of rainfall simulators has led to 

better control and understanding of rainfall erosivity characteristics, such as 

raindrop diameter, size, velocity, fall height, kinetic energy and intensity 

(Morgan 2005). Pioneer research in this area was led by Laws (1941) who began 

to measure the fall velocity of raindrops. Despite a great deal of research into 

rainfall erosivity, simulated rainfall will never be able to replicate natural rainfall 

due to the latter’s inherently variable character. However, control of rainfall 
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erosivity is fundamental when wishing to isolate and thus assess the effect of a 

specific soil or surface property on erosion. 

Rainfall simulators can be used under laboratory conditions or in the field in 

conjunction with micro-erosion plots of a specified area. The use of rainfall 

simulators in laboratory based erosion research is covered in chapter 5. Their use 

in the field is discussed in this chapter. Laboratory based rainfall simulators have 

advantages over field based ones. Experimental conditions at the start of the 

simulated rainfall event can be controlled, in particular soil moisture and wind 

velocity. These factors cannot be completely controlled in the field and inevitably 

this can lead to variation in erosion data generated. Despite this, field based 

rainfall simulations are still an important tool for soil erosion research due to 

their flexibility (i.e. ability to modify rain events, and use on different terrains 

and field treatments). 

Spatial scale implications must be considered when estimating field scale soil 

erosion from data generated from micro-plot rainfall simulations. It is important 

to consider whether the erosion processes operating over only a few square 

metres (micro-plot scale) compare with those operating over 500m2 (field scale). 

For example, at the micro-plot scale, the process of rain splash will be the 

dominant erosion process compared to rill formation at the field scale (Morgan 

2005; Rickson 2006). Results obtained from micro-erosion plots may not reflect 

the considerable differences in soil conditions occurring across a field. So, why 

are they still used? Rainfall simulators are still the best method for controlling 

rainfall, allowing controllable experimental conditions in which to study specific 

treatment responses to changes in soil or surface properties. By using micro-

erosion plots, researchers can give indications of treatment responses to erosion, 

i.e. can state whether one treatment is better than another in minimising erosion 

(Andraski et al. 1985). Hudson (1995) advised caution in the use of micro-

erosion plots when comparing similar treatments, due to the variability in erosion 

rates at different spatial scales, so that direct extrapolation of results was not 
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possible. More details on spatial scale extrapolation and integration will be 

addressed in chapter 6. 

4.2 Aim, Objectives and Hypotheses 

4.2.1 Aim 

The aim of this chapter is to investigate soil erosion and runoff generated from 

different soil management treatments, using simulated rainfall on micro-erosion 

plots in the field. Parameters to be measured and analysed are soil loss, runoff 

volume and runoff rate.  

4.2.2 Objectives 

I To identify if significant differences in runoff volume and soil loss occur 

between three different soil management treatments; conventional tillage (C) 

and two forms of conservation tillage (SOWAP - S and Farmer’s Preference 

-F). Any differences found will be explained in terms of supporting field 

evidence. 

II To critically evaluate whether there are any differences in the rates of runoff 

generation for the three different soil management treatments. 

4.2.3 Hypotheses 

4.2.3.1 Hypothesis One 

It is expected that runoff volume from the conventional treatment will be 

significantly higher than for both conservation treatments – SOWAP and 

Farmer’s Preference. Consequently, the application of conventional soil 

management will also increase the risk of soil erosion by water. Before 

considering the impact of different soil management practices on runoff 

generation, it is necessary to consider the processes leading to runoff generation 
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and the factors affecting these processes (Table 4.2-1). With this in mind, the 

ways in which soil management can affect these factors can be investigated. 

Table 4.2-1 Processes leading to runoff generation and factors affecting these 
processes 

Runoff generation 

Process Factor Description 

Seal formation  A surface seal consists of two parts, a) an area of 
redistributed eroded particles and b) a ‘washed-in’ zone 
where clay is dispersed and clogs soil pores just below the 
surface (Lado et al. 2004). Both contribute to seal 
formation thereby impeding infiltration. The creation of 
surface seals has been linked to a high clay and silt content 
(Slattery & Bryan 1994) and low organic matter content. 

Bulk density - 
BD 

Consolidation of the soil matrix will lead to a decline in 
infiltration rates, of which BD is an indicator. A high BD 
represents increased amount of compaction or 
consolidation.  

Moisture 
content -MC 

Soil moisture content affects runoff generation in two 
ways.  The gravitational pull of water down through the 
matrix is exacerbated by the suction from dry aggregates 
(Charman & Murphy 2000). Infiltration rates therefore 
increase with a decline in moisture. However, this decrease 
in MC also increases the strength of pre-formed crusts, 
reducing infiltration rates (Bennett et al 1964). 

Biological 
community 

The presence of an active soil biological community has 
been linked to the maintaining of soil structural porosity 
(Lavelle et al. 2006). Preferential pathways of flow within 
the soil profile are also created via the burrow action of 
plant roots and earthworms. This biological action 
maintains infiltration rate. 

Infiltration 
rate 

Surface 
characteristics 

The presence of a rough surface has been linked to an 
increase of infiltration rates. Surface stones and rock 
fragments and the stem base and root zone of vegetation 
(Morgan & Rickson 1988), have all be associated with 
infiltration rate increase. 

Surface cover  Surface residues, rock fragments and vegetation stems all 
reduce flow resistance. The effect of the latter, changes 
over time as the vegetation grows and stems widen. 

Flow 
resistance 

Surface 
roughness 

An increase in surface pitting i.e. roughness will create a 
higher resistance to flow, disrupting and dissipating the 
energy flow of water thereby lowering its velocity (Takken 
et al. 2001) energy available for sediment transport.  
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In terms of erosion processes at the micro-plot scale, and how soil management 

practices may affect these, it is expected that surface cover will be a primary 

factor determining soil detachment, by controlling the area of soil exposed to 

rainfall. The effect of rain drop impact on exposed aggregates will then be 

determined by the inherent soil properties, which determine the erodibility of soil 

aggregates and detachment rates. The dominant transport mechanisms of eroded 

soil particles will be through splash-effects and entrainment within overland 

flow/runoff. The latter being affected by infiltration rates and resistance to flow, 

controlled by the combination of soil properties and surface characteristics (see 

Table 4.2-2). Details of the effect of soil properties and surface characteristics on 

soil erosion can be found in section 1.2.5. An overview of how soil properties 

and surface characteristics affect soil detachment and transport at the micro-

erosion plot scale are presented in Table 4.2-1 and Table 4.2-2. 

Table 4.2-2 Factors which affect the resistance of aggregates to breakdown  

 

Factor Process 

Clay Strong cohesive forces exist between clay particles and as a result 
have been shown to have a positive relationship on aggregate stability 
(Le Bissonnais et al. 2002). A reduction in clay will increase the 
susceptibility of soil aggregates to rain drop impact and splash 
erosion 

Organic matter 
and carbon 

Organic matter and carbon are intrinsically linked and have a strong 
positive relationship with aggregate stability by increasing cohesion 
between soil particles, therefore a reduction in OM and SOC will 
decrease aggregates’ stability and increased soil erodibility  

Moisture 
content 

The moisture content affects particle cohesion within an aggregate. If 
an aggregate is too dry or too wet then cohesive strength is reduced. 
Dry aggregates are more at risk of slaking. This is where air is forced 
out of an aggregate as water enters the aggregate. During this process 
soil particles are forced apart.   

Soil biota The soil biota is an important factor in soil erodibility. For example, 
plant roots and fungal hyphae produce organic cements and 
connectors which increase inter-particulate cohesion, and thus 
aggregate stability. 
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As seen in Table 4.2-1 and Table 4.2-2 soil properties and surface characteristics 

are drivers of runoff generation and soil erosion. These factors can be affected by 

the application of different soil management practices. Such treatment effects on 

each factor are discussed in the following text. 

It is expected that the percentage of surface cover will be greater on the 

conservation treatment compared to the conventional plots. The percentage cover 

from crops should be similar, but weed growth has been shown to be higher on 

conservation treatments. Although the latter is deemed as a problem regarding a 

decline in crop productivity, it can help reduce erosion (Table 4.2-2). A cover 

crop (e.g. mustard) may be planted to protect the soil surface against rain drop 

impact before the main crop is established. However, the most well known 

conservation practice is the application of residues. Not only do residues protect 

the soil surface from rain drop impact, but they have been associated with an 

increase in organic matter and carbon contents, reductions in the extremes of 

diurnal soil temperatures and conservation of soil moisture. Surface protection of 

the soil is also given by stone cover.  Differences are expected in stone cover for 

the different soil management treatments, as the action of ploughing and soil 

inversion on the conventional treatment will redistribute stones within the soil 

profile.  

The action of ploughing and increase in mechanical manipulation of the soil on 

the conventional treatment is expected to reduce surface roughness as aggregates 

are broken down to form a ‘fluffy’ seed bed. Both conventional and conservation 

based treatments will experience a decline in surface roughness over time, caused 

by soil consolidation by raindrop impact and subsequent “settling” or re-packing  

of the disturbed aggregates (Morgan 2005). Even so, it is expected that surface 

roughness will be higher on the conservation plots as they have experienced 

fewer cultivations which can potentially lead to aggregate breakdown.  

An increase in bulk density is associated with poor structure and soil matrix 

consolidation. The latter resulting from compaction primarily caused by field 
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operations. As conventional tillage involves more field operations, the risk of 

compaction is expected to be greater than that experienced on the conservation 

treatments. However, the lack of inversion tillage associated with the long term 

application of conservation tillage, has been shown to increase bulk density, but 

the practice of sub-soiling can mitigate it. It is not expected that this problem will 

occur during the relatively short time period involved in the project.  As well as 

experiencing less mechanical disturbance, it is also assumed that soil structure 

will be better on the conservation plots, due to the less disturbed biological 

community associated with non-inversion tillage systems (such as increased 

population of earthworms). Overall it is expected that bulk density will be higher 

on the conventional treatment, compared to the conservation treatments. 

As stated previously the application of surface residues helps maintain soil 

moisture content and increases organic matter and carbon content. The lack of 

soil inversion and reduction of soil disturbance also helps to minimise organic 

matter mineralisation (Turley et al. 2003; Roldán et al. 2005) i.e. the biological 

decomposition of organic material into simple organic or inorganic products 

(Brady & Weil 2002) via soil microorganisms. Therefore the soil under 

conservation management is expected to have higher moisture contents and 

levels of organic matter and carbon compared to conventionally treated soil.  

It has been found that clay is lost through erosion events, preferentially during 

small erosion events (Quinton et al. 2001). Erosion is estimated as being greater 

on conventional treated soil (stated previously) inferring clay loss would also be 

higher. Therefore a more rapid decline of clay is expected with time from the 

conventional treatment. An implication of clay reduction is a decrease in 

aggregate stability leading to increased risk to erosion and therefore forms a self 

perpetuating process. 

The combination of reduced surface cover, lower organic matter content, reduced 

aggregate stability and increased bulk density associated with the conventional 
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treatment results in an increased risk of runoff generation and erosion, compared 

with that from the conservation treated soil. 

4.2.3.2 Hypothesis Two 

In hypothesis one it was stated that there will be differences in the runoff 

volumes and soil eroded between the two types of soil management. Hypothesis 

two deals with the difference in rates at which runoff is generated. When the rate 

of runoff remains the same, equilibrium is reached. It is predicted that the 

equilibrium of runoff rate will be reached at some point in time for both 

treatment types, but it is expected that this will occur within a shorter period of 

time for the conventional treatment. 

It is predicted that the soil surface on the conventional plots will become sealed 

at a faster rate, as decreased aggregate stability leads to more splash erosion and 

sealing. The consequence of this is a reduction in infiltration rates, depression 

storage and increased overland flow. These erosion processes are expected to be 

the result of treatment induced changes in surface cover and roughness, bulk 

density and organic matter as discussed in hypothesis one. Sealing rates are also 

expected to be higher for the conventional treatment due to the expected lower 

surface roughness for this treatment. Hence the potential for depression storage is 

less and ponds will quickly form, but will also break faster thereby ‘releasing’ 

the retained water leading to the generation of runoff (Morgan 2005). It is this 

relationship of storage and release which will differ between treatments. A 

hypothetical representation of this can be seen in Figure 4.2-1. The storage time 

will be of a longer duration on the conservation plots, but water release will 

occur quickly and equilibrium will be reached shortly after. Conversely, storage 

time on the conventional plots will be of a relatively short duration, and release 

will occur over a much longer period of time. It should be noted that where the 

simulated storm used in this research lies on the storage/release curve is 

unknown.  
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Figure 4.2-1 Hypothetical storage-release curves of runoff generation  

Runoff rates will be compared between treatments over a standard 30 minute 

storm. This differs from hypothesis one where storm length varied.  

4.3 Methodology 

Two sites located in the UK were used in this investigation, the first at 

Loddington, Leicestershire and the second at Tivington, in Somerset. Three soil 

management treatments were adopted at each site. The conventional (C) tillage 

treatment involved the use of a mouldboard plough to invert the soil. Neither of 

the two conservation tillage treatments inverted the soil. The two conservation 

treatments were used - SOWAP (S), and Farmer’s Preference (F). In advance of 

this present study a demonstration field was identified and the treatments applied. 

A detailed description of each site and soil managements practices adopted can 

be found in chapter 2.  

Details of the date, season and crop present at each micro-erosion plot trial can 

be found in Table 4.3-1. The April 2004 simulations at Loddington were carried 

out as a pilot run, however the data are valid and have been incorporated into the 

dataset. 
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Table 4.3-1 Micro-erosion plot trial descriptions 

Site Season Crop Trial Date 

1 Winter Wheat 1 April 2004 

2 No crop sown * 2 September 2004 

3 Spring Beans 3 March 2005 

4 November 2005 

Loddington 

4 

 

Winter Wheat 

 5 April 2006 

1 September 2004 2 Winter Wheat 

2 March 2005 

3 November 2005 

Tivington 

3 Winter Beans 

4 April 2006 

* treatments were: C – stubble from previous crop until late ploughing; S – tilled 
and cover crop sown; and F – ploughed and residue left 

4.3.1 Micro-erosion plot location 

The area required per rainfall simulation was 3m (across slope) by 4m (up-down 

slope). This allowed an effective work area without risk of damage to 

neighbouring plots. Three rainfall simulations were carried out for each 

treatment, twice a year in the spring and autumn. At Loddington simulations ran 

from spring 2004 to spring 2006, making a total of 15 simulations. At Tivington 

simulations ran from autumn 2004 to spring 2006, making a total of 12 

simulations. At Loddington two areas of land were set aside above each of the 3 

treatments. These areas (9m by 12m) were assigned for rainfall simulations and 

associated sampling (Figure 2.1-4). This area was divided into blocks of 3m by 

4m and randomly assigned a simulation date; an example of this can be seen in 

Figure 4.3-1. Each area of land was situated at the top of each erosion plot. 

At Tivington, the area of available land for sampling and simulations was 

adjacent to the erosion plots (Figure 2.1-5) and covered an area 25m by 9m. The 

25m sampling strip was sectioned off into 15 blocks of 3m by 5m. The 12 

simulations to be carried out per treatment were randomly assigned a sampling 

block; an example of this can be seen in Figure 4.3-2. 
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Figure 4.3-1 Rainfall simulation sampling design: Loddington 

 
Figure 4.3-2 Rainfall simulation sampling design: Tivington 

Measurements taken during the rainfall simulations included time to runoff, 

runoff rate, runoff volume, sediment concentration, calculated sediment loading, 

and plot surface characteristics – extent of ponding and seal formation, surface 

roughness and percentage cover 

4.3.2 Rainfall simulation equipment 

The micro-erosion plot area was rectangular in shape, measuring 1.5m2 (1.5m 

up/downslope and 1m across slope). Metal sheeting was set into the ground to a 

depth of at least 10cm to delineate the plot area, leaving the downslope side open 
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for a collection system. The collection system (Figure 4.4-3) consisted of a metal 

or plastic edging which fed into a trough where runoff and sediment were 

channelled into a beaker and measured. A protective covering was used (Figure 

4.3-3) to prevent rainfall entering the collection system, which would have lead 

to an overestimation of runoff generation. 

Figure 4.3-3 Micro-plot collection system (left) and protective covering (right) 

There are two main designs of rainfall simulator, ones that produce raindrops 

from nozzles under pressure or under a low static head of water. Irrespective of 

the design used, it is important to maintain pressure to produce consistent fall 

velocity and rainfall distribution. An in-depth review of rainfall simulators can be 

found in Hudson (1995) and Rickson (2006). The rainfall simulator used in this 

research produced simulated rainfall 3m above the ground through a nozzle 

(Nozzle Lechler 460.788, Figure 4.3-4) at 0.39 bar, with a mean rainfall intensity 

of 35mm h-1. Over a 30 minute storm the D50 drop size was 1.04mm and the total 

kinetic energy was 0.16 J m-2 s-1 details of which can be found in the Appendix 

C.  

The intensity of rainfall used in past research has been varied, reflecting 

conditions of the test area. Past research has used intensities of less than 15 mm 

h-1 (Olayemi & Yadav 1983; Myers & Wagger 1996), 25 mm h-1 (Karunatilake 

2002), 35 ±3 mm h-1 (Slattery & Bryan 1994; Wan & EL-Swaify 1999; 
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Somaratne & Smettem 1993), 45-65 mm h-1 (Gómez & Nearing, 2005; Wan & 

EL-Swaify 1999; Myers & Wagger 1996) and over 70 mm h-1 (Bedaiwy & 

Rolston 1993; Ndiaye et al, 2005; Bedaiwy & Rolston 1993; Andraski et al. 

1985). A rainfall intensity of 35mm h-1 was universally adopted across all 

countries involved in the parent demonstration project, SOWAP.  

 
Figure 4.3-4 Lechler nozzle 460.788 

The simulated storm duration was originally run until runoff reached equilibrium 

(i.e. when runoff rate became constant). This was estimated to be at least 40 

minutes, based on work from the University of Leuven, Belgium on loess soils 

using the same equipment and the same rainfall intensity (personal 

communication; Govers, G. 2004). After the first trial simulations, the time taken 

to reach equilibrium ranged from 25min to 1hr 20min on the UK soils. As 

previously mentioned the time needed to reach equilibrium is influenced by 

many soil and surface factors. For example a study on the effects of antecedent 

moisture content on runoff generation compared a pre-wetted and dry soil, both 

receiving simulated rainfall for 25 minutes. It was found that the dry soil reached 

a steady state of runoff after 25 minutes, but the pre-wetted soil did not (Le 

Bissonnais & Singer 1992).  As differences in soil properties and surface 

characteristics was expected between treatments, a standard time allowing 
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equilibrium to be reached for all treatments could not be defined. Instead a set 

simulation time was chosen, based on operation logistics, taking into account 

limitations of time, water supply and man power. A simulation running time of 

30 minutes was deemed sufficient to generate runoff, and possibly reach 

equilibrium for some treatments. This running time has been used in other studies 

(Schiettecatte et al. 2005; Ndiaye et al. 2005; Wan & El-Swaify 1999; Myers & 

Wagger 1996).  

Wind velocity during rainfall simulation was an issue at both sites. The mean 

wind velocities were 1.26m s-1 and 2.19m s-1 at Tivington and Loddington 

respectively. On the Beaufort scale these velocities are defined as “just 

perceptible” to “a gentle breeze” (Met Office 2006). Despite these relatively low 

mean wind velocities, it was found that the velocity was not constant, with gusts 

of winds occurring sporadically. The maximum velocities received during the 

cropping seasons were 6.12m s-1 at Tivington and 9.44m s-1at Loddington, 

classed as a “fresh breeze” to “fresh gale” (Met Office 2006). These unexpected 

gusts of wind caused variability in the distribution of the simulated rainfall – 

sometimes enough for the rainfall to miss the micro-erosion plots. To solve this 

problem a wind break was constructed and set up adjacent to the micro-erosion 

plots during simulation (Plate 4.3-1). 

Plate 4.3-1 Wind breaks used during rainfall simulations 
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 A small two-stroke petrol engine was used to pump water through the rainfall 

simulator and onto the micro-erosion plots. The water used at both sites was 

obtained from the local mains supply and was carried in containers onto the field 

for each simulation. Previous work has shown that water from a local mains 

supply is similar in erosivity to natural rainfall (Barton 1994). 

Consideration was given as to the initial conditions of the plots prior to the 

application of rainfall. Results from previous studies have shown that runoff and 

soil loss results are affected by the initial soil moisture content. This has led to 

some researchers pre-wetting plots before testing (Hudson 1995). Others have 

carried out successive simulations on the same plot area; an initial dry run and 

subsequent wet runs 24 hours later (Wan & El-Swaify 1999). Pre-wetting has 

been shown to reduce seal development (Le Bissonnais & Singer 1992). In the 

case of this study, pre-wetting was not used. Soil moisture content can differ with 

changes in tillage treatments due to the presence of surface residues for example. 

If plots were pre-wetted any possible treatment effects would then be lost. It was 

felt that for this study, pre-wetting was not advisable and that simulations should 

be carried out ‘dry’ or rather at the field condition present at the time. 

Once the micro-erosion plot was installed, plot and soil measurements were 

carried out before, during and after the simulation. These will be discussed in the 

following text; a summary of these measurements can be found in Table 4.3-2. 

4.3.2.1 Soil and micro-erosion plot properties before and after rainfall 

simulation 

Before a simulation was carried out, the slope gradient of the micro-erosion plot 

was measured. Slope is an important factor in determining runoff generation and 

velocity. Steeper slopes generate more runoff than gentler slopes; therefore it is 

important that the slope gradient should be constant between micro-erosion plots. 

Soil surface roughness was also measured using a small link ball chain, 1m in 

length. As previously stated, surface roughness can affect the rate at which runoff 
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occurs. The ball chain was draped along the soil surface and measured; if the 

surface was completely smooth (i.e. flat) then the length would be 1m: less than 

1m would indicate some degree of surface roughness. Surface roughness was 

measured before and after simulation in the same place, vertically down slope. A 

visual assessment of the surface cover of the micro-erosion plot before 

simulation was also carried out. The percentage total cover was measured which 

included the crop, weeds, residues and stones; from this the percentage bare soil 

was calculated. Surface cover from crop, weeds, residue and stones is important 

in physically protecting the soil surface from rainfall impact, also the presence of 

residue aids in preventing the soil surface drying out. The percentage plot area 

covered by surface seals3 and ponds4 was also visually assessed before and after 

simulation. Three soil surface soil samples (0-5cm depth) were randomly taken 

outside of the plot area before simulation, and inside the plot area after 

simulation. These samples were then used to determine gravimetric and 

volumetric moisture content and bulk density before and after the application of 

simulated rainfall. Differences in moisture content and bulk density can lead to 

changes in infiltration rates which affect runoff rates. Once analysis was 

complete the samples taken outside the plot (representing the “before” simulation 

condition) were used to determine total organic carbon content. Before and after 

the simulation took place a photograph was taken of the micro-erosion plot, so 

that the plot could be revisited to help resolve any unanswered questions 

4.3.2.2 Measurements during rainfall simulation 

Three rainfall gauges were placed in proximity to the micro-erosion plot to 

collect any natural rainfall that may fall during the simulation. Ideally rainfall 

simulation should not be carried out when it is raining. During simulations rain 

                                                 

3 Seals or sealing represents the area of soil surface where reconstruction of aggregates 
has occurred to form an impermeable layer. 

4 Ponds or ponding refers to an area of surface soil where water has been unable to 
infiltrate or drain away causing water to collect to form a pool. 
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may start to fall making it important to collect any possible natural rain that may 

fall and factor it in to any calculations made. Four additional rainfall gauges were 

placed adjacent to the micro-erosion plot to collect simulated rainfall. From these 

four gauges the total volume of rainfall can be measured, and the rainfall 

intensity (mm hr-1) over a given time can be calculated. Other measurements 

which were taken during the simulation were; the start time of the simulation, the 

time after rainfall commenced to the start of runoff and the time taken to collect 

every 100ml of runoff to give an indication of runoff rates. Also during the 

simulation a visual assessment was made of the spatial extent (percentage plot 

area) of surface seals and ponds. This assessment was carried out every 5-10 

minutes, which also allowed an assessment of the rates of seal and pond 

formation. Notes were also taken of any experimental variability, for example 

problems of wind gusting or change in direction, and the presence of any erosion 

features or preferential pathways of flow within the plot area. Once the 

simulation had finished the end time was noted and all runoff samples taken for 

that specific run were amalgamated, and agitated. Three sub-samples of total 

runoff were taken to calculate sediment loss. 

Table 4.3-2 Micro-erosion plot and rainfall simulation measurements overview 

Measurement Method Location Time 

slope of MP plot (%) clinometer Within the MP 
plot 

before the 
rainfall 
experiment 

area of MP plot (m²) Measure width (m) x length 
(m) 

MP plot before the 
rainfall 
experiment 

bulk density (g cm-3) use copecki-rings (density 
rings)   
at surface (0-5cm) 
3 replications 

outside the MP 
plot  

 

inside the MP 
plot  

before the 
rainfall 
experiment 

after the rainfall 
experiment 

volumetric and 
gravimetric moisture 
content (%) 

use soil samples from 
copecki-rings (see above),  
3 replications 

outside the MP 
plot  

 

before the 
rainfall 
experiment 
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inside the MP 
plot 

after the rainfall 
experiment 

Surface cover (%) of 
-  crops, residues, 
weeds and stones 

use 1m2  quadrats of the MP 
plot  
estimate the cover (%)  

MP plot before the 
rainfall 
experiment 

rainfall intensity 
(mm/h) 

place four rainfall gauges 
evenly around the MP plot 
and measure rainfall volume 

put rainfall 
gauges next 
to the MP plot 

during the 
rainfall 
experiment 

assessment of 
ponding (%) 

visual assessment MP plot every 5-10 min 
during the 
experiment 

assessment of 
sealing (%) 

visual assessment MP plot every 5-10 min 
during the 
experiment 

time of runoff start  
(min:sec) 

visual assessment   during the 
rainfall 
experiment 

time to runoff 
(min:sec) 

a) measure time of every 100 
ml increments until 1.0 l is 
collected 
b) after that, measure time to 
every 500 ml until the end of 
the experiment 

  during the 
rainfall 
experiment 

total runoff volume 
(l) 

Amalgmate all the runoff 
water into a large container 
and measure the total runoff 
volume at the end of the 
experiment. 

  after the rainfall 
experiment 

sediment 
concentration  
(g l-1) 

a) agitate total runoff and 
sediment collected (after 
rinsing out the collecting 
tube) 
b) take three sub-samples of 
100ml each 
c) dry out the samples  

d) weigh sediment and 
express as sediment mass 
(kg) and concentration (g l-1) 

  after the rainfall 
experiment 

total sediment loss 
(g) 

multiply the calculated 
sediment concentration by  
the total runoff volume 

  after the rainfall 
experiment 

MP = micro-erosion plot  
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4.3.3 Rainfall intensity calibration 

The rainfall intensity generated by the simulator was calibrated by placing a 

1.5m2 grid under the rainfall target area, with catch cups of known diameter 

placed uniformly on the grid. The catch cups collected rainfall during a set period 

of time, and the amount of rainfall retained was measured. The mean rainfall 

intensity was measured as 35mm hr-1 (the results can be found in the Appendix 

D). 

After the rainfall simulator had been calibrated it was still important to confirm 

that the simulator was consistently generating a rainfall intensity of 35mm hr-1 

for all experimental runs. Differences in rainfall intensity will have an effect on 

the volume and rate of runoff. Rainfall intensities were analysed for both sites 

and there were no significant differences in rainfall applied between individual 

experimental runs. 

4.3.4 Rain drop size distribution calculation 

The rain drop size distribution of the simulated rainfall was measured to 

determine the median drop size (D50) and kinetic energy of the 30 minute rainfall 

event. The method used in the present study was modified from the flour pellet 

method presented by Hudson (1964). Household flour was sieved through a 2mm 

mesh, and scooped into a tin (10cm diameter by 5cm deep) to a depth of at least 

2cm (representing the minimum depth needed to cushion the impact of 

raindrops). The surface of the flour in the tins was also roughened to aid 

absorption of droplet impact. 

Each prepared tin was placed under the simulated rainfall for 1-2 seconds, which 

is sufficient time to capture individual raindrops before they coalesce - a few trial 

runs were carried out in order to identify the appropriate time of exposure. A tray 

was placed under the rainfall target area and split into sections and a prepared tin 

was placed in each section. This allowed multiple tins to be exposed to rainfall at 
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once. Fresh tins of flour were exposed to rainfall for 1-2 seconds every 5 minutes 

over a 30 minute period. 

The exposed tins containing the captured raindrops were then placed in an oven 

at 105°C for a minimum of 12 hours. Once removed from the oven they were 

placed into desiccators to avoid re-absorption of moisture in the air. The flour 

pellets formed on drop impact became hardened and were sieved to determine 

pellet size classes. The nest of sieves used in this calibration was 700µm, 1, 1.4, 

1.7, 2, 2.3 and 2.8mm. The ratio of pellet mass to raindrop mass is known for the 

flour used, and this ratio was applied to determine raindrop sizes. From the 

distribution of raindrop sizes, the median drop size (D50) can be calculated. The 

D50 calculated in this experiment was 1.04mm, which is realistic for temperate 

conditions, where the D50 of rainfall is estimated to be between 1-2mm (personal 

communication; R.J. Rickson, 2005). The maximum drop size recorded was 

3.76mm (for more detailed see Appendix C) 

4.4 Results 

This results section will show all data relating to the micro-erosion plots and 

rainfall simulations in relation to the previously set out objectives. The data from 

each site will be considered separately in turn, due to the differences in site 

characteristics. For example, slope gradient varied between sites. At Loddington 

the mean slope percentage was statistically the same for all treatments at 3.6%. 

At Tivington the mean slope over all treatments was much steeper at 7.0%. 

Although a protocol was set so that rainfall intensity, simulation duration and 

plot area were constant between experimental runs, this was not always possible 

due to equipment variability. The data were therefore standardised to allow 

comparison between simulation trials. The runoff volume and soil loss results for 

each simulation were converted to litres or grams per hour, per unit of rainfall 

(mm) per square metre. The statistical analysis undertaken is described in section 

2.2. 
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4.4.1 Hypothesis one 

It is expected that the mean runoff and soil loss will be significantly higher from 

the conventionally treated plots compared to the conservation treatments 

(SOWAP and Farmer’s Preference). The adoption of conventional tillage will 

lead to an increase in runoff generation and soil erosion. 

The results of runoff volume and soil loss are presented for each site separately. 

For each site, the runoff volume and soil loss data are analysed for treatment 

differences at 3 temporal scales: 

 The mean loss for the entire sampling period (the mean of each treatment 

over all micro-erosion plot simulations) 

 The mean loss for each cropping season (the mean of each treatment over all 

micro-erosion plot simulations within each season) 

 The mean loss for each simulation trial date (the mean loss of each treatment 

from 3 replicate micro-erosion plot simulations) 

Where results were not normally distributed, and had unequal variance, the data 

were transformed to allow ANOVA to be performed. Details of the statistical 

analysis undertaken in this chapter can be found in section 2.2. Where 

statistically significant differences between treatments have been found, these 

have been highlighted.  

The breakdown of which simulation trials occurred during which cropping 

season at each site can be found in Table 4.4-1. 
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Table 4.4-1 Dates of micro-erosion plot simulation trials in relation to cropping 
season 

Site Cropping Season Simulation Trial 

  Date Number 

Loddington One: March 2004 – June 2004 April 2004 1 

 Two: September 2004 – March  2005 September 2004 2 

 Three: March 2005 to August 2005 March 2005 3 

 Four: September 2005 – July 2006 November 2005 

April 2006 

4 

5 

Tivington One: March 2004 – August 2004 No simulations were performed 

 Two: September 2004 – July 2005 September 2004 

March 2005 

1 

2 

 Three: November 2005 – August 2006 November 2005 

April 2006 

3 

4 

4.4.1.1 Loddington 

The runoff volume and soil loss data were not normally distributed and so were 

transformed (Type I) to satisfy the assumptions of ANOVA. The treatment 

means were compared over the 3 previously mentioned temporal scales – over 

the entire sampling period, on a season basis, and across each simulation trial 

date. 

Treatment comparisons of runoff volume over the entire sampling period showed 

no significant differences (Figure 4.4-1). Although not statistically significant, 

the mean runoff volume from the conventional treatment was substantially higher 

compared to the two conservation treatments. When treatment means were 

compared on a seasonal basis and for all simulation trials no statistically 

significant differences were found. Although not significant it would appear that 

during season 3 the runoff volume generated by the Farmer’s Preference 

treatment was the highest of all treatments, but in season 4, the conventional 

treatment generated the highest volume (Figure 4.4-2). 
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Figure 4.4-1 Loddington: mean runoff volume over the entire sampling period. 
Letters denote significant differences 

These treatment trends on a seasonal basis were confirmed when data were 

compared across individual simulation trials, where significant differences were 

found (p=0.003), but only for the third and fourth simulation (season 2 and 3 

respectively), where runoff volumes were highest from the Farmer’s Preference 

and conventional treatment respectively (Figure 4.4-3). 
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Figure 4.4-2 Loddington: mean runoff volume on a seasonal basis. Letters indicate 
significant differences. 
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Figure 4.4-3 Loddington: mean runoff volume across all simulations. Letters 
indicate significant differences. 

When mean soil loss was compared between treatments over the entire sampling 

period, no statistically significant differences were found (Figure 4.4-4). 

Although not statistically significant, the soil loss from the conventional 

treatment was notably higher than that from the SOWAP treatment. Comparison 

of treatment means on a seasonal basis also showed no significant differences in 

soil losses (Figure 4.4-5). 
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Figure 4.4-4 Loddington: mean soil loss over the entire sampling period. Letters 
denote significant differences 

When data were analysed across each simulation there were significant 

differences (p=0.01). The results are presented in Figure 4.4-6, and show that 
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there does not seem to be a regular pattern in treatment means, i.e. one treatment 

does not consistently generate more soil loss than another. The only statistical 

treatment differences occurred during the third and fifth simulations (season 3 

and 4 respectively). In the first case the soil losses were highest from the 

Farmer’s Preference treatment, but only compared to the SOWAP treatment. In 

the second case, soil loss from the conventional treatment was higher than both 

conservation treatments. 
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Figure 4.4-5 Loddington: mean soil loss on a seasonal basis. Letters indicate 
significant differences. 

When comparing treatment differences at any of the temporal scales, it should be 

noted that the variability of the data was sometimes high. However, soil losses do 

appear to follow similar trends to the runoff results. A simple correlation was 

done to see if the amount of soil loss could be linked with the volume of runoff 

generated. This was confirmed by a positive correlation (r=0.87*, n=39) between 

the runoff volume and soil loss, as shown in Figure 4.4-7.  
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Figure 4.4-6 Loddington: mean soil loss for each simulation trial. Letters indicate 
significant differences 

Correlation: r = 0.87
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Figure 4.4-7 Correlation between soil loss and runoff volume data from the 
Loddington micro-erosion plot simulations (p<0.05, n=39) 

Other correlations were carried out between the soil loss / runoff volume data and 

surface characteristics / soil properties data as measured at the time of each 

micro-erosion plot trial. The latter properties include percentage cover 

(incorporating different types of cover), soil texture, organic matter, organic 

carbon, moisture content and bulk density. Only the significant correlations have 

been shown, these have been presented in Table 4.4-2. Two unexpected 
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correlations were found - between runoff and soil loss and organic carbon, and 

between runoff volume and bare soil/total cover. Both gave the opposite results 

than what would have been expected.  

Table 4.4-2 Loddington: significant correlations between runoff volume, soil loss 
and soil and surface properties 

Factor One Factor Two Correlation 

Runoff volume Volumetric moisture content +0.32 

Runoff volume Bulk density +0.45 

Runoff volume Soil organic carbon (0-5cm) +0.65 

Runoff volume Bare soil  -0.42 

Runoff volume Organic matter -0.53 

Soil Loss Bulk density +0.41 

Soil Loss Stone cover +0.43 

Soil Loss Organic carbon +0.63 

4.4.1.2 Tivington 

To satisfy the criteria of using ANOVA, the data were tested for normality. The 

runoff results were normally distributed, but the soil loss results had to be 

normalised (Type I). Both runoff volume and soil loss were statistically analysed 

for treatment differences between means at 3 temporal scales – over the entire 

sampling period (all simulations), by season (all simulations within a given 

season) and by each individual simulation trial 

Statistical analysis of treatment means over the entire sampling period showed 

the runoff volume from the conventional treatment to be significantly higher than 

both conservation treatments (p=0.003). Seasonal comparisons showed there 

were no significant treatment differences, even though in the third season (Nov 

05-Jul 06) runoff appears to be much higher than for the two conservation 

treatments (Figure 4.4-8). No statistically significant differences were found 

when treatments were compared across the simulations either. Despite the lack of 

significance it does appear that runoff volume from the conventional treatment 
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was notably higher than for either of the conservation treatments for the first, 

third and fourth simulation trial (Figure 4.4-9). 
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Figure 4.4-8 Tivington: runoff volume overall and for each season. Letters indicate 
significant differences. 
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Figure 4.4-9 Tivington: mean runoff volumes for each simulation trial. Letters 
indicate significant differences. 
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Statistical analysis of mean soil loss between treatments was carried out for the 3 

temporal scales, as previously mentioned. Graphical representation of the results 

can be found in Figure 4.4-10 and Figure 4.4-11. Statistically significant treatment 

differences were not found at any of the temporal scales investigated. Although 

not statistically significant, soil loss from the conventional treatment appears to 

be higher than at least one of the conservation treatments. This was the case at all 

3 temporal scales.  
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Figure 4.4-10 Tivington: mean soil loss over the entire sampling period and on a 

seasonal basis. Letters denote significant differences. 

As with the results from Loddington, there appeared to be a similarity between 

the results of runoff volume and soil loss. This is confirmed by a significant 

positive correlation (r=+0.85*, n=36) between runoff and the transformed soil 

loss results (Figure 4.4-12). Soil and surface properties were correlated to runoff 

and soil losses and significant associations have been presented in Figure 4.4-11. 
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Figure 4.4-11 Tivington: mean soil loss for each treatment for every simulation 
trial. Letters denote significant differences. 

Correlation: r = 0.85
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Figure 4.4-12 Correlation between runoff volume and transformed soil loss data 
from the Tivington micro-erosion plot trials (p<0.05, n=36) 
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Unexpected significant correlations were found between soil loss and organic 

carbon, and the effect of crop cover on runoff volume and soil loss.  

Table 4.4-3 Tivington: significant correlations between runoff volume, soil loss and 
soil and surface properties 

Factor One Factor Two Correlation 

Runoff volume Bulk density +0.53 

Runoff volume Crop cover +0.52 

Runoff volume Residue cover -0.54 

Runoff volume Surface roughness -0.36 

Soil Loss Organic carbon  +0.40 

Soil Loss Volumetric moisture content +0.58 

Soil Loss Bulk density +0.62 

Soil Loss Crop cover +0.74 

Soil Loss Residue cover -0.50 

Soil Loss Surface roughness -0.38 

4.4.2 Hypothesis two 

It is expected that the rate of runoff will be faster from the conventionally treated 

plots compared to both conservation treatments. This is due to expected 

treatment induced changes in surface cover and roughness, bulk density and 

organic matter, resulting in increased splash erosion and sealing, and lower 

infiltration rates compared with the conservation treatments. 

Treatment differences in the rate of runoff generation were compared by plotting 

the cumulative runoff (l) against time for each simulation run. The results for 

Loddington and Tivington are presented in Figure 4.4-13 and Figure 4.4-14  

respectively. Trial 1 at Loddington was part of the pilot simulation, where only 1 

replicate was carried out for each treatment. The results have been included as 

the results are still valid. It should be noted that trial 4 is missing from Figure 

4.4-13, because no runoff was generated for those simulations. The remaining 3 

trials all consisted of 3 replicates per treatment, although not all simulations 

generated runoff. 
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The runoff trends at Loddington all appear to show a linear relationship between 

cumulative runoff over time. During trial 3 one replicate from the Farmer’s 

Preference treatment generated runoff at a substantially faster rate. However, 

where runoff was generated there seems to very little difference in the runoff 

trends from the different treatments overall.  
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Figure 4.4-13 Loddington: micro-erosion plot cumulative runoff. Dates for the 
trials are as follows: trial 1 – April 2004; trial 2 – September 2004; trial 3 – March 
2005; and trial 5 – April 2006. Treatments were: C = conventional, S = SOWAP 
and F = Farmer’s Preference. Trial 4 generated no runoff. 

The results from the Tivington site show that the cumulative runoff from the 

conventional treatment appears to be markedly different from the conservation 

treatments, especially during trial 1. The conventional runoff trends during trial 1 

indicate that runoff occurs at a much faster rate, with more runoff being 

generated over a shorter space of time. Trials 3 and 4 also show that runoff is 
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being generated more quickly from the conventional plots compared to the 

conservation treatments but this is not as pronounced as trial 1. 
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Figure 4.4-14 Tivington: micro-erosion plot cumulative runoff.  Dates for the trials 
are as follows: trial 1 – September 2004; trial 2 – March 2005; trial 3 – November 
2005; and trial 4 – April 2006. All trials n=9. Treatments were: C = conventional, S 
= SOWAP and F = Farmer’s Preference 

Plotting cumulative runoff against time only allows a qualitative assessment of 

treatment differences in runoff rate. To allow a more robust comparison, the 

number of 100ml increments of runoff collected over a 5 minute period was 

compared between treatments for a total of 30 minutes.  

Statistical analysis of the Loddington results show that over a 30 minute period 

there were no significant differences between treatments in the number of 100ml 

increments generated on a 5 minute basis. Analysis of the Tivington results also 

shows there to be no statistical difference between treatments. This confirms the 

qualitative assessment given by the cumulative runoff shown in Figure 4.4-13 at 
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Loddington, but not at Tivington.  The runoff generated within a 5 minute period 

over 30 minutes has been presented in Figure 4.4-15. Despite the lack of 

statistical significance it appears that as time passes the difference in the volume 

of runoff generated within a 5 minute between the conventional and conservation 

treatments increases. It is suggested that if simulations were to be carried out for 

longer than 30 minutes the differences between conventional and conservation 

treatments would increase in time. This implies that runoff rates between 

treatments are different; specifically that they are comparatively higher from the 

conventional treatment towards the end of a 30 minute storm, rather than at the 

start. 
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Figure 4.4-15 Overall mean runoff generation within 5 minute increments over a 
30 minute period at Loddington (left) and Tivington (right).  

4.4.3 Additional correlations 

Additional correlations show that at both sites the percentage of seals present 

before simulations were carried out significantly influenced the percentage of 

ponds that were present after the simulations. This was an expected response. 

The percentage area covered with surface seals at the end of the rainfall event 

showed a significant positive relationship with the mass of soil loss. This was an 

expected relationship but only occurred at Tivington. The percentage area 

covered by seals was also significantly correlated with runoff volume, however, 

this was a negative relationship and was not expected. As seal formation 

increased runoff was shown to decrease. Looking at the previous set of results, 
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the percentage of seals was the highest on the conservation plots. It was predicted 

that the conservation treatments would have a higher surface roughness, giving 

more surface storage capacity within depressions. This was confirmed by a 

significant negative correlation between surface roughness and runoff volume at 

Loddington (as stated in hypothesis one). In addition to this, measurements taken 

of surface roughness over the entire sampling period at Loddington (see field 

data shown in chapter 3), show the results from the Farmer’s Preference 

treatment were significantly higher than for the conventional treatment. It is 

therefore unlikely that the percentage area covered by seals reduces runoff, but it 

is in fact related to degree of surface roughness instead. No relationship between 

runoff and surface sealing or pond formation was found at Tivington. 

Table 4.4-4 Significant correlations between runoff volume and soil loss with the 
presence of seal and ponds 

Site Factor Seal %:  
time zero 

Seal %: 
time end 

Pond %: 
time end 

Loddington Total runoff (l ) x -0.61 x 

Loddington Total soil (g) x x x 

Tivington Total runoff (l ) x x x 

Tivington Total soil (g) x 0.55 x 

4.5 Discussion 

It was predicted that the runoff volume and soil lost from the conventional 

treatment would be significantly higher than that generated from the two 

conservation treatments. In addition to this, runoff rates were also expected to be 

significantly higher from the conventional treatments. Anticipated responses 

were due to changes in soil properties (organic matter, carbon and clay content 

and bulk density) and surface characteristics (surface roughness and percentage 

cover) as discussed previously. Changes in these properties were expected to lead 

to differences in infiltration rates, aggregate stability, and resistance to overland 

flow. Therefore these properties were measured including spatial extent of 

surface seals and ponds to gain an understanding of the observed results. 
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This discussion will be split into two sections. The first will discuss the actual 

loss of runoff volume and soil mass. The second will be concentrating on rates of 

runoff generation. Both these sections will be specific to differences between soil 

management treatments. 

4.5.1 Runoff volume and soil loss  

Predicted treatment responses of runoff and soil loss were supported by the 

current data set. At both sites, mean (over the entire sampling period) runoff 

volume and soil loss was substantially greater from the conventional treatment in 

comparison to at least one of the conservation treatments. However, only 

treatment differences in runoff volume at Tivington were statistically significant. 

At Loddington the substantially higher volumes of runoff and mass of soil lost 

from the conventional treatment (over the entire sampling period) could be 

explained in terms of observed treatment induced changes in soil / surface 

characteristics. It was discovered that levels of organic matter, organic carbon 

and clay content were significantly lower on the conventional treatment. The 

effect of this would be a reduction in cohesive strength between soil particles 

leading to lower aggregate stability and resultant lower resistance to rain drop 

impact and splash erosion. The effect of organic matter on runoff was affirmed 

by a significant negative correlation (r=-0.53*, n=36). In addition, the risk of 

surface sealing would be greater and risk to runoff generation increased. 

Increased formation of sealing on the conventional treatment was found not to be 

the case. However, the percentage area of ponding was substantially greater, 

indicating an inability rainfall to infiltrate. It was also found that the conventional 

treatment had overall a significantly lower surface roughness. As a result the 

resistance against overland flow would have been substantially lower, allowing 

runoff and entrained sediment to flow downslope more easily. The connection 

between runoff generation and soil loss was supported by a significant positive 

correlation (r=+0.87*, n=39). 
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At Tivington, runoff generation was significantly and soil loss substantially 

higher from the conventional treatment in comparison to both conservation 

regimes. This observed treatment difference could be related to present soil and 

surface properties. It was observed that the clay content of soil from the 

conventional treatment was significantly lower than at least one of the 

conservation treatments. As stated previously the implication of this would be a 

reduction in cohesive strength between soil particles and a lower aggregate 

stability. Erodibility would therefore be reduced. Surface cover was found to be 

significantly lower on the conventional treatment to both conservation 

treatments. This was shown in percentage cover from weeds and surface 

residues. Although the former is deemed as unfavourable, reducing crop quality, 

the presence of weeds physically protects the soil from rain drop impact (Laflan 

& Colvin 1981). The presence of residues also physically protects the soil surface 

from rainfall and splash erosion. It also has an additional benefit of increasing the 

microtopography, although a significant treatment difference in surface 

roughness was not observed. Significant negative correlations affirmed the effect 

of surface residue on runoff volume (r=-0.55*, n=34) and soil loss (r=-0.50*, 

n=34). The overall higher percentage area of exposed soil on the conventional 

treatment increases risk of soil detachment, surface sealing, pond formation and 

runoff generation.  

Where treatment differences were found the losses of soil and runoff from the 

conventional treatment were notably higher than the conservation treatments; 

occurring at both site locations. This pattern was not only found over the entire 

sampling period (as previously mentioned) but also on a seasonal and micro-

erosion plot trial basis. There was however, an exception, which occurred at 

Loddington during the third simulation trial, March 2005 (season 3). Soil loss 

was significantly greater from the Farmer’s Preference treatment. Runoff volume 

(although not statistically significant) was also notably higher from the Farmer’s 

Preference treatment. This result could not be explained by measured soil and 
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surface properties, therefore other processes must have been operating. This led 

to further investigation of field notes and photographs taken during this trial. 

Visible differences in the plot surfaces were apparent. The Farmer’s Preference 

plots appeared to have pronounced downslope lines, which related to where the 

crop had just been drilled. These were also found on the SOWAP treatment but 

to a lesser extent. Expectedly no dill lines were present on the conventional 

treatment. Images of these plots can be found in Plate 4.5-1.  

Conventional SOWAP 

 
Farmer’s Preference 

Plate 4.5-1 Loddington: surface 
conditions during micro-erosion plot 
simulation trial 3 (March 2005).  

 

It would have been expected that the presence of drill lines would have increased 

infiltration rates. However, as it can be seen there was little soil cover which 

would have led to increased risk to soil detachment and sealing. If the drill lines 

had become sealed quickly, any accumulated water on the surface could be easily 

channelled downslope via the drill lines into the collection system. This is 

actually what occurred as shown by Plate 4.5-2. 



  

- 169 - 

 
Plate 4.5-2 Loddington: Farmer’s Preference (March 2005) drill line feeding into 
the collection system. 

Overall it was found that the predicted treatment response to erosion was 

supported by the data from this study. These results could be explained through 

observed soil properties and surface characteristics. It was found that changes in 

runoff volume and soil loss on clay soils with a gentle slope gradient were 

effected predominantly by changes in soil properties. However, differences in 

surface characteristics seem more influential on sandy clay loam soils with a 

greater slope gradient.  

4.5.2 Rates of runoff generation 

It was expected that runoff generation would be faster on the conventional 

treatments due to a priori reasoning of reduction in infiltration and resistance to 

surface flow. The treatments were compared over a 30 minute storm measuring 

the volume (in 100ml increments) generated every 5 minutes. No significant 

treatment differences were found at either site in relation to runoff generation and 

time. Despite the lack of significance, noteworthy trends emerged.  

It was found that during the early part of the storm treatment differences were not 

apparent, however, as time progressed runoff generation from the conventional 

treatment increased compared to the conservation treatments. This was an 

expected response.  
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During the first part of a storm, rain falls, and is infiltrated unless already capped 

(e.g. from previous erosion). As time progresses, the soil surface starts to 

deteriorate due to the impact from rain drops leading to seal formation. From this 

point treatment differences become apparent. On the conservation treatments 

surface cover was found to be substantially greater than the conventional 

treatment. This means that a lower percentage of surface soil is exposed to 

rainfall, lowering the risk of seal formation. Aggregate stability was also 

expected to be higher on the conservation treatments, due to the observed higher 

soil content of organic matter, carbon and clay. Therefore soil erodibility would 

also be lower. These changes in soil and surface properties would have led to 

reduction in infiltration, which was visibly seen as surface ponding.  

During the latter stages of the simulated storm, i.e. towards 30 minutes, the 

difference in percentage area covered with surface ponds between treatments 

reduced. Yet the distinction between conventional and conservation treatments in 

terms of runoff generation was highly pronounced. At this point in time, the 

presence of a rough soil surface (as found on the conservation treatments) would 

have been important in providing increased depressional storage and resistance to 

overland flow, therefore a reduction in runoff generation.  

Plotted time lines of pond formation for each micro-erosion plot trial confirmed 

that the rate of ponding was greater (in the majority of cases) on the conventional 

treatment; most visible at Tivington. Although not presented in the text these 

time lines can be found in the Appendix E. 

The results from this current study have important implications to the potential 

benefit of adopting conservation tillage in the minimisation of runoff generation. 

The results imply that at the start of a storm and/or for short storms 

(<10minutes), the form of tillage employed appears to have little or no difference 

on runoff generation. However, towards the end of a storm (of around 30 

minutes) the adoption of conservation tillage can reduce runoff generation.  
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These findings show that the benefit in reducing runoff generation through the 

adoption of conservation tillage is dependent on rainfall patterns (i.e. short or 

long storm events). This has implications for policy makers when utilising 

conservation tillage as a flood management tool. 

4.5.3 Implication of this study 

The implication of this study to current research is the reaffirmation that tillage 

induced changes in soil properties and surface characteristics are intrinsically 

linked to the risk of erosion. The retention of organic matter, organic carbon and 

clay are important soil properties, reducing soil erodibility. Surface 

characteristics including surface cover (from residues and weeds) and roughness 

are crucial in providing surface depressions for water storage and increasing 

resistance to overland flow. 

Another implication of this study is the effect storm duration has on identifying 

treatment differences in rate of runoff generation. Treatment differences in runoff 

rate only appear as storm duration increases. This has implications for future 

experimental designs and relating results from micro-erosion plots to field scale 

losses, taking into account natural rainfall patterns. 

4.5.4 Future research recommendations 

Due to constraints in water supply, time and manpower, the present data were 

generated before hydrological equilibrium was achieved for any of the 

treatments. Further studies should run the simulations until equilibrium is 

reached for each treatment. This will allow observations as to a) when 

equilibrium is achieved for each treatment and b) the treatment differences (if 

any) at equilibrium. Such a study will also allow further comparison of runoff 

and soil losses over time, as well as the changes in soil and surface properties 

during a rainfall event. 
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4.6 Conclusion 

This present study has shown that the adoption of conservation tillage can be 

effectively used to minimise runoff generation and soil loss as a result of 

treatment induced changes in soil properties and surface characteristics. These 

include increases in organic matter, organic carbon and clay content, higher 

surface roughness and surface cover. The application of conservation tillage also 

reduced the rate at which runoff was generated, however this benefit was not 

found during the early stages of a storm, only as storm duration increased (data 

not measured over 30 minutes).  

The results have shown that changes in soil properties and surface characteristics 

influence the volume and rate to which erosion occurs. However, it was found 

that the specific influence of soil / surface properties was site specific. Clay soils 

with a higher organic matter content and gentle slope gradient were more 

affected by changes in soil properties. In contrast to this, sandy clay loam soils 

with low organic matter content and a steeper slope gradient were primarily 

affected by fluctuations in surface characteristics.  



  

- 173 - 

5 Small scale erosion assessment – aggregate stability 

5.1 Introduction 

The susceptibility of a soil to erosion (i.e. its resistance to detachment and 

transportation by erosive agents) is related to field characteristics (slope gradient 

and length, and aspect), meteorological conditions (rainfall and wind intensity, 

duration and erosivity), anthropogenic influences (tillage operations, choice of 

land use) and inherent soil characteristics (aggregate stability, texture, organic 

matter content, porosity and soil biota). 

The stability of soil aggregates is often used as a predictive tool to assess soil 

erodibility (Bryan 1968; Six et al. 2000). The more stable aggregates present 

within a soil, the less likely the soil is to erode. Aggregate stability is related to 

many different soil parameters including organic matter content, texture, 

moisture content, calcium content and microbiology.  

There is a danger that this method of assessing soil erodibility is overused to 

indicate field scale erosion risk, because this approach is relatively easy and 

inexpensive, compared to the installation of field scale erosion plots. There are 

several different methods of measuring aggregate stability such as Emerson’s 

dispersion method, slaking tests, wet sieving of aggregates, and exposure of 

aggregates to simulated rainfall and single dropper tests. It is vital that the 

appropriate method is representative of the field or design condition in question 

(e.g. rainfall intensity). This work will test three methods of assessing soil 

aggregate stability. Each method will assess the differences in aggregate stability 

as affected by three different tillage practices. Comparisons will be drawn as to 

the reliability and effectiveness of the different techniques in assessing soil 

aggregate stability. 

The term aggregate stability is the capacity of an aggregate to resist degradation 

from external forces. In the field these forces include breakdown by machinery 
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and tillage practices, and by water and wind. It is important that during sample 

collection, transportation, handling and testing care is taken to minimise 

disruptive forces. The stability of soil aggregates has been used in many 

investigations as an indicator of soil erodibility, soil processes and soil ‘health’, 

as it is a property that changes with changes in soil properties. Examples include 

work on seal formation (Lado et al. 2004), organic matter (Chenu et al. 2000), 

infiltration (Abu-Hamdeh et al. 2006), soil microbiology (Kandeler & Murer 

1993a; Kiem & Kandeler 1997), rangeland health (Herrick et al. 2001) and runoff 

generation and erosion processes (Barthès et al. 2000). Despite aggregate 

stability being commonly used as an indicator of erodibility, there is no standard 

method to assess this critical soil characteristic. Therefore it is important that 

methods of testing aggregate stability (often involving the artificial simulation of 

aggregate breakdown) are consistent, allowing comparisons between results of 

other research studies or datasets.  

5.1.1 Soil and Aggregate Formation 

Soil consists of aggregates formed through aggregation of primary soil particles 

which arrange into different sized structural units. Subunits are bound together to 

form aggregates through biological and physical-chemical processes. Small 

aggregate formation (<1mm) is largely controlled by physical-chemical 

processes associated mainly with clay particles. Larger aggregate formation or 

formation in sandy soils (with little clay content) relies substantially on 

biological processes. Primary soil particles are bound together to form aggregates 

through stabilising agents. These can be biotic, abiotic or environmental (Brady 

&Weil 2002; Stuttard 1985). 

Biotic aggregation can result from organic cements, physical binding agents and 

through physical movement i.e. by burrowing organisms and plant roots. Organic 

cements/exudates bind soil particles together and are produced from root hairs, 

bacteria, fungi and other microbes. Plant roots (especially root hairs) and fungal 

hyphae bind soil particles together through the formation of sticky networks of 
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organic compounds.  This process of physically binding soil particles together 

leads to the formation of macro-aggregates (≈0.3mm) (Brady & Weil 2002; 

Rowell 1994). Aggregates are also formed as soil organisms (worms, certain 

arthropods like termites) and plant roots burrow through the soil, pushing soil 

particles together. This has been previously mentioned in chapter 1, section 

1.2.5.2.5. 

Abiotic aggregate formation occurs as a result of cohesive forces between clay 

and water, flocculation of clay platelets into clay domains or floccules, and from 

inorganic cements like calcium, iron and aluminium sesquioxides. Flocculated 

clays are cemented by adsorbing cations (Brady & Weil 2002).  

Environmental effects of temperature and water cycles in particular are important 

in aggregation processes, especially on smectite dominated soils, such as 

vertisols which are montmorillionite-rich clays with shrink-swell charactersitics. 

The shrinking and swelling action causes a soil to crack and reform, breaking 

down aggregates and forming new ones. This soil re-formation and re-

organisation can help reduce impacts of soil compaction.  

5.2 Aim, Objectives and Hypotheses 

5.2.1 Aim 

The aim of this chapter is to investigate the effect of different soil management 

treatments on soil erodibility, as measured by 3 different methods of aggregate 

stability testing. Any changes in results due to method choice will be highlighted. 

5.2.2 Objectives 

I To evaluate whether soil management practice alters surface soil aggregate 

size distribution. 

II To quantify and explain the effect of soil management practice on surface 

soil aggregate stability. 
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III To make critical comparisons between the results of 3 different methods of 

aggregate stability testing. 

5.2.3 Hypotheses 

5.2.3.1 Hypothesis One 

It is expected that the surface soil horizon (top 10cm) of the conventionally (C) 

managed plots would have a different aggregate size distribution with lower 

mean weight diameter (MWD) compared to soil from either of the conservation 

treatments (SOWAP, S and Farmer’s Preference, F). Mean weight diameter is 

defined as the summation of the mean diameter in proportion to the total sample 

weight within each size fraction studied (Kemper & Rosenau 1986) It is also 

expected that the relative ranking of both dry and wet mean weight diameters 

(MWD) for all treatments would remain the same, but that results obtained using 

the wet method would be lower than that of the dry. The wet method of MWD is 

more destructive as it involves the quick wetting of the soil aggregates, which 

can lead to the process of slaking (Le Bissonnais 1996b). 

Conventional soil tillage involves primary and secondary cultivations. Primary 

cultivation involves the inversion of the topsoil, burying of previous crop 

material along with any surface nutrients or residues, including organic matter. 

Secondary cultivation breaks down the surface aggregates further to create a seed 

bed of small sized aggregates, which give maximum soil/seed contact. 

Conservation tillage in contrast to conventional practices, involves a reduction in 

the mechanical manipulation of the soil as there is only one cultivation applied, 

and no inversion of the soil takes place. Therefore differences in aggregate size 

distribution and mean weight diameter (MWD) would be expected. Thus the 

MWD of soil from the conventional treatment is expected to be lower than the 

two conservation treatments used in this study, reflecting the assumption that the 

majority of aggregates within the conventionally tilled soil are composed of 

smaller sized aggregates.  



  

- 177 - 

The aggregate size distribution is important within the soil as this is linked to the 

processes of soil erosion. As shown by Hjulström’s curve (Hjulström 1935; 

Figure 1.2-2) for a given energy input (e.g. rainfall, runoff etc), particle size 

affects whether processes of detachment, transport or deposition will take place. 

This is also reflected by work by Poesen (1992). The curve suggests that both 

small (<0.2mm) and large aggregates (>10mm) are less erodible, due to cohesive 

effects in the small aggregates, and mass of particle for the larger aggregates. The 

implication is that if soil management does affect aggregate size, this will 

indirectly affect the erosion processes operating.  

5.2.3.2 Hypothesis Two 

It is expected that soil surface aggregates on conventionally treated plots will be 

more erodible compared to aggregates on conservation treated plots. 

Aggregate stability is expected to be less under conventional tillage because of 

increased mechanical manipulation of the soil, decreasing levels of organic 

matter primarily because of the burial of relatively highly organic top soil during 

ploughing. Organic matter and carbon have been found to have a positive 

relationship to aggregate stability (Robinson & Philips 2001) and has been 

previously discussed in chapter 1, section 1.2.5.2.2. As well as organic matter 

being buried during inversion, surface soil biota which help bind aggregates 

together are also disturbed by conventional ploughing. Networks of plant roots 

and fungal hyphae are damaged during ploughing. Conservation soil 

management aims to reduce the amount of mechanical manipulation of the soil, 

and generally does not involve topsoil inversion. Conservation management 

encourages the retention of surface residues or the use of a cover crop during 

periods when the conventional soil surface would be bare. Residues and cover 

crop add organic matter (Robinson & Blackman 1989) and provide a food source 

for soil biota, which in turn can increase the stability of aggregates as discussed 

above. Specific detail on how soil properties affect soil erodibility can be found 

in section 1.2.5.2. 
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5.2.3.3 Hypothesis Three 

The degree of aggregate breakdown will vary between different methods of 

aggregate stability assessment. However, the relative treatment ranks of 

aggregate stability will remain constant.  

Absolute results are expected to differ between the different methods employed 

to test aggregate stability. This is because each test applies different destructive 

forces to the aggregates. The immersion based methods of wet sieving and the 

field test kit are expected to be more destructive when compared to the water 

droplet method (using a gravity fed rain tower). The immersion based methods 

simulate flooding conditions, subjecting the aggregates to quick, but total wetting 

which results in slaking. The raindrop impact method simulates natural rainfall 

which is destructive but not as destructive as the immersion methods, because 

water is applied intermittently (as individual raindrops). It is therefore expected 

that the immersion based methods will yield fewer stable aggregates than the 

raindrop impact method. Despite the differences between methods, the relative 

ranking of aggregate stability between tillage treatments is expected to remain 

the same, irrespective of method employed. 

5.3 Methodology 

Two sites located in the UK were used in this investigation, at Loddington, 

Leicestershire and Tivington, Somerset. Three soil management treatments were 

tested; conventional tillage (C) and two forms of conservation tillage - SOWAP 

(S) and Farmer’s Preference (F). For more detailed site and treatment 

descriptions see chapter 2).  Samples of the soil aggregates were obtained 

adjacent to the micro-erosion plots (section 4.3.1) to allow comparison of results 

at the two spatial scales. Sampling occurred at Loddington in April 2004, 

September 2004 and March 2005 which corresponded to 3 different cropping 

seasons; winter wheat, cover crop/stubble and spring beans (for more details see 

section 2.1.4). At Tivington sampling dates were September 2004 and March 
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2005 which corresponded to only 1 cropping season; winter wheat. The number 

of sampling dates was constrained by the time available for the tests to be carried 

out, and subsequent analysis. Also, the key aim of this study was to compare 

differences between treatments at any given point in time, rather than changes in 

aggregate stability over time. It was expected that such differences may not 

become apparent in the time scale of this project (<3 years). 

5.3.1 Sampling 

During sample collection of soil aggregates, disturbance is inevitable as soil is 

removed from the ground when using a spade, trowel or auger. Handling and 

transportation also causes damage. As soon as soil is removed from the field it is 

instantly modified; some have argued that this makes tests for stability unrealistic 

of the field situation (Kemper & Rosenau 1986). This may be true, but if a 

protocol is devised and kept to, relative comparisons between different soil 

management treatments are possible. 

To minimise disturbance great care was taken during each stage of sampling the 

aggregates. Once the sample had been removed it was stored and prepared for 

testing as soon as possible after sampling. It has been shown that stability can 

increase with storage time (Kemper & Rosenau 1986). This relates to soil 

particles dry out causing neighbouring particles to bond together through 

cohesion and the concentration of carbonates and organics.  

Three random areas of undisturbed soil adjacent to the micro-erosion plots 

(section 4.3.1) were used for sample generation in this investigation. Soil 

samples were delicately removed from the top 5 cm of soil using a hand trowel. 

This soil was then placed into large plastic bags and cushioned during transport 

to avoid disturbance. Each sample bag was gently emptied and laid out one 

aggregate layer thick across a drying tray (or across several depending on the 

amount of soil). All aggregates were left to air dry at room temperature away 

from direct sunlight at a constant humidity for 3 days. 
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5.3.2 Sieving for Aggregate Size Distribution 

The air dried aggregates were manually sieved on flat bed sieves, through a wide 

range of sizes to ascertain the aggregate size distribution of each sample. 

Seventeen sieve sizes were used in the determination, ranging from 12.5mm to 

0.075mm. Manual sieving causes inevitable breakdown of aggregates as they are 

passed over each sieve, so to minimise this, three separate stacks of sieves were 

used at a time. The first stack comprised of sieve sizes 12.5, 9.5, and 5mm, the 

second used sizes 4, 3.35, 2.8, 2.35, 2, 1.7 and 1.4mm and the third used sizes 1, 

0.71, 0.5, 0.425, 0.3, 0.15 and 0.075mm. The large number of sieve sizes was 

chosen to detect any possible treatment differences in aggregate size distribution. 

Increasing the number further would have made the work impractical and time 

consuming. The sizes used gave a detailed distribution of aggregate sizes within 

a soil sample, unlike expressions such as mean weight diameter (MWD), which 

is used in the majority of research on soil aggregate sizes. The latter only gives 

one figure to represent the distribution of aggregate sizes within a soil. The 

method employed here gave much more detailed treatment comparisons. 

The air dried aggregates were placed on the top of each stack of sieves and 

manually shaken horizontally a total of 10 times and then gently tapped down 3 

times to make sure all loose particles fell through. This technique was derived 

from previous pilot runs where visual assessments were made on the number of 

oscillations it took for the majority of soil to pass through the sieves. After 10 

oscillations, soil appeared to breakdown as a result from the action of the 

mechanical sieving itself. As sieving (manual or mechanical) causes aggregates 

to breakdown, due to abrasion, it was important to standardise the method used.  

Both Chepil (1962) and Lyles et al. (1970) highlighted the problems of 

breakdown of aggregates through sieving. It has been suggested that re-sieving a 

soil several times and tracking the rates of breakdown between each re-sieve 

allows back extrapolation as to what the original soil distribution would have 

been. Caution must always be taken when extrapolating results. For this 
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investigation it was not required, as treatment differences were being compared 

and any errors associated with breakdown due to the sieving process itself were 

assumed to be equal for all treatments, and thus were effectively cancelled out. 

The mass of aggregates retained by each sieve was measured, and the aggregates 

were bagged and labelled for later testing. The mass of aggregates on each sieve 

were calculated as a percentage of the total mass of aggregates, and plotted to 

produce an aggregate size distribution graph. The mean weight diameter (MWD), 

as pioneered by Van Bavel (1949), was also calculated as follows:- 

i

n

i
i wx∑

=1
 

(5.3-1) 

Where xi is the mean diameter of each size class (mm) and wi is the proportion of 

total weight of that class size in relation to the whole. It was expected that the 

conventional treatment would consist of more small sized aggregates, as 

represented by a smaller MWD in comparison with the conservation treatments.  

5.3.3 Tests for Aggregate Stability 

Testing for aggregate stability can be achieved using wet or dry methods. Dry 

methods involving dry sieving such as using a rotary sieve which is used to 

ascertain soil susceptibility to wind erosion (Chepil 1962). Wet methods simulate 

rainfall or flooding conditions, as used in this investigation. Three wet based 

methods of aggregate stability testing were used - a raindrop impact method 

(using a gravity fed rain tower to simulate a natural rainfall event), a wet sieving 

method and a field test kit method (both simulating flooding conditions). 

5.3.3.1 Pre-treatment 

In both dry and wet methods of aggregate stability, it was important that the 

starting conditions of the soil samples being tested are the same, if comparisons 

are to be made. Aggregates with different moisture contents will react to 
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disturbances in different ways. Even if testing with air-dry aggregates, moisture 

will still be present unless the soil is oven dried, but this will change the inherent 

soil properties under investigation. Therefore pre-wetting aggregates to a uniform 

moisture content was chosen to ensure identical starting conditions. The method 

used to achieve uniform moisture content is also important, as different 

techniques lead to differing degrees of destruction. Three common ways to pre-

wet an aggregate are through quick wetting, suction or the use of an atomiser. 

The first technique of quick wetting involves the complete immersion of soil 

aggregates into water and allowed to stand for a set period of time, to ensure 

complete wetting (Grieve 1979). This method is fast and can be done in any 

laboratory, but it is the most destructive of the three techniques, causing the most 

amount of aggregate breakdown. When water is applied to an air dried aggregate, 

trapped air is forced out (Emerson 1954), sometimes with an explosive force 

(Lyles et al. 1974) – a process known as “slaking”. It is therefore important to 

immerse the air dried aggregates as slowly as possible. This is difficult in itself, 

but the water must also be applied at a constant rate for every aggregate. 

The second technique of suction or wetting via capillarity involves placing air 

dried aggregates on to a permeable cloth placed on a sand table, where the 

aggregates are wetted up from beneath. Different rates of suction can be applied 

by the use of vacuums to achieve set moisture contents such as field capacity. 

This method was adopted in work by Low (1954). Unfortunately this technique 

can take up to 2 days for each sample to reach complete saturation, making it 

impractical if testing a large number of samples. Also, once saturated, the 

aggregates are extremely difficult to transport (e.g. to the rainfall simulator) 

without breakdown. 

The third technique uses an atomiser. Aggregates are placed within a chamber 

and a fine mist is sprayed by an atomiser for several hours or until saturation is 

reached. This equipment needs to be calibrated before use to identify the time 

needed for saturation to be achieved. Aggregates are saturated slowly, reducing 
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the amount of damage caused to the aggregates. Unfortunately this equipment is 

very expensive and was unavailable to this present study. 

Due to equipment and time constraints, the first technique of fast wetting had to 

be adopted. The moisture content therefore used was saturation. It was also felt to 

be the most appropriate as other known moisture contents such as field capacity 

change with site and season. To obtain a uniform moisture content, 10g [± 0.5] of 

the air-dry aggregates were placed onto a concave glass dish where water was 

introduced slowly at a constant rate until all aggregates were completely 

immersed. The aggregates were allowed to stand for 30 minutes to ensure 

complete saturation. This was sufficient time (Grieve 1979) for even the larger 

aggregates to become saturated. It was imperative that water was introduced on 

very slowly to minimise destruction of the test aggregates. 

5.3.3.2 Aggregate sizes tested 

Before stability tests were carried out it was important to assess the relationship 

of aggregate stability and size on soil from each site location. Previous research 

indicates that relationships exist between particle size and stability (Hjulström 

1935; Poesen 1992).  

Aggregates sized 0.5mm to 9mm were tested for stability in a preliminary 

experiment to assess the effect of aggregate size on aggregate stability. Five size 

classes were tested, these were 9.95-5, 5-3.35, 3.35-2, 2-1 and 1-0.5mm (the 

range of aggregate sizes tested is shown by the two dotted lines in Figure 5.3-1). 

The smallest size was determined by the aperture of the sieve used in the wet 

sieving experiment (see section 5.3.3.3.1). The results of this preliminary test can 

be found in Appendix F. This experiment found that there were no significant 

differences in stability of the different aggregate classes. Therefore the size range 

3.35-5mm was used in aggregate stability tests. Similar size ranges have been 

found in other research (Gimeno-García et al. in preparation; Legout et al. 2005; Low 

1954; Barzegar et al. 2003). This range of aggregates was used for all stability 



  

- 184 - 

methods employed in this chapter. In this method, any aggregates retained on the 

0.5mm sieve after the test is carried out are assumed to be “stable”. The 

aggregates to be tested for stability were taken from those produced by the 

aggregate distribution sieving (see section 5.3.2). 

 
Figure 5.3-1 Hjulström's curve – as modified from Hjulström (1935) 

Herrick et al. (2001) recommends aggregates from 5-9mm in size are used in the 

field test kit (FTK), however, in the present study aggregates between 3.35-5mm 

were also tested to allow a fair comparison with the results from the wet sieving 

method. Only results from the aggregates sized 3.3.5-5mm are shown for the 

FTK because the stability results gained from both sizes (5-9 and 3.35-5mm) 

were statistically the same. In the FTK method, any aggregates retained on the 

1.6mm sieve after the test is carried out are assumed to be “stable”. 

Aggregates between 3.35-5mm were also tested via rain drop impact under the 

gravity fed rain tower, again to allow comparisons to be made between methods. 

In this method, as with the wet sieving method, any aggregates retained on the 

0.5mm sieve after the test is carried out are assumed to be “stable”. 
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5.3.3.3 Immersion based methods of aggregate stability 

Testing the stability of aggregates in water began with work based on Stokes 

Law, looking at the settling velocity of aggregates in a viscous fluid of known 

density and viscosity. The method is similar in principle to the determination of 

particle size distribution but with larger sized particles. Notable work was done 

by Middleton (1930) who devised the dispersion ratio, and by Davidson & Evan 

(1960). 

Yoder (1936) modified work originally by Tiulin (1928) to devise the now well 

used method of wet sieving aggregates to test for stability and size distribution. 

Wet sieving involves soil aggregates being placed on the top sieve of a nest of 

sieves, which are then submerged in a container of water. The sieves are then 

oscillated for a set time period at a set rate of oscillations per minute. Aggregates 

remaining on the sieve surfaces are collected, weighed, oven dried and re-

weighed. The mass of aggregate remaining above a defined sieve size (as a 

percentage of the initial mass) gives an indication of stability. The size and 

number of sieves used are specific to the work being undertaken. The mean 

weight diameter (MWD) can also be calculated Van Bavel (1949). This is the 

proportion of each aggregate size in relation to the whole, multiplied by the mean 

diameter of all sizes measured (as shown in Equation (5.3-1). This results in a 

single number to represent the mean aggregate size (mm) of that soil. The general 

assumption is that the greater the MWD, the more stable the soil (Yoder 1936; Le 

Bissonnais 1996). Wet sieving and the use of MWD appear to be common place 

in research into wet aggregate stability (Kandeler & Murer 1993; Legout et al. 

2005; Six et al 2000). 

Other notable tests of wet aggregate stability are the Emerson Aggregate Test 

(Emerson 1967) which generates a stability index for 3-5mm diameter aggregates 

when immersed in water; Child’s quick wetting test (Childs 1940), which 

simulates flooding and sheet erosion (Morgan & Rickson 1988). This was later 

modified by Collis-George & Figueroa (1984). More recently in 2001, Herrick et 
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al. devised a field test kit that is quick and inexpensive to use, which combined 

the Emerson Aggregate Test (Emerson 1967) and elements of the wet sieving 

test, using a 1.65mm sieve. 

The two immersion based methods of wet aggregate stability testing used in this 

investigation were wet sieving and the field test kit 

5.3.3.3.1 Wet Sieving 

There are no standard procedures (i.e. number of oscillations, aggregate initial 

moisture content, sieve sizes or duration of experiment) for determining water 

stable aggregates in soils. This study has chosen a method based on work by Low 

(1954) and Van Bavel (1952), which has been widely adopted in several 

countries. Air dried aggregates were selected and pre-treated using the method 

mentioned in section 5.3.1. A sub-sample of pre-treated aggregates (3.35-5mm) 

was taken from each sample to determine initial moisture content before wet 

sieving. Soil aggregates, 3.35-5mm (10g, ±0.5) were saturated and placed onto a 

nest of sieves in a randomised design. Each sieve stack consisted of 5 different 

sieve sizes - 2, 1, 0.5, 0.125, 0.1mm aperture. The nest of sieves were bolted 

together to avoid soil being lost during the experiment, immersed slowly at an 

angle into a large water container making sure there were no air locks. Six sieve 

stacks could be tested at once. The immersed sieves holding the aggregates were 

moved up and down through the water at a rate of 30 strokes per minute. 

Previous runs (Low 1954) using this method have shown that no further 

appreciable breakdown of aggregates occurs after 500 strokes, therefore a 

running time of 17 minutes (510 strokes) was deemed to be appropriate and 

concurred with previous research using the same equipment (Plate 5.3-1). 

During the 17 minutes of agitation the water level within the container was kept 

constant. After the test, the nest of sieves was removed slowly from the water 

and allowed to drain. The sieves were then unbolted and separated from each 
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other. Any soil material retained on the surface of each sieve was transferred to a 

pre-weighed tin, oven dried for 48 hours at 105°C and reweighed (step a).  

  

Plate 5.3-1 wet sieving apparatus (top 
left); a single stack of sieves (top right); 
retained aggregates after sieving (left) 

To correct for the presence of coarse primary particles, the oven dry aggregates 

(from the previous step) greater than 0.5mm were submerged in water and all soil 

particles washed through a 0.5mm sieve. The remaining material (coarse primary 

particles) on the sieve surface were oven dried for 24 hours at 105°C and 

reweighed. The oven dry weight of the coarse primary particles was then 

subtracted from the air dry weight of material >0.5mm as presented in step a. 

This figure represents the mass of stable aggregates above 0.5mm (step b). This 

mass of stable aggregates was then represented as a percentage of the original 10 
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g of air dry soil which had been standardised for its initial moisture content. The 

MWD was also calculated (see Equation (5.3-1) for more details). 

5.3.3.3.2 Field Test Kit 

The field test kit is a visual assessment of aggregate breakdown and was based 

on the design by Herrick et al. (2001), who designed a simple kit that could be 

easily and inexpensively used in the field to determine the stability of a soil. 

Within 10 minutes it is possible to test up to 18 soil aggregates for soil stability. 

This method is based on immersion and sieving of soil fragments in water. The 

kit consists of a segmented box. Within each section there is a small 1.65 mm 

sieve. Specific detail on how to recreate the equipment (Plate 5.3-2) can be found 

in Herrick et al. (2001). 

Plate 5.3-2 Field test kit (FTK) apparatus. Test box dimensions 21 x 10.5 x 3.5 cm. 
Sieve size 2cm diameter and 1.65cm aperture. 

Air-dry soil aggregates, 3.35-5mm (10g ±0.5) (as described in section 5.3.1) were 

placed onto each sieve outside the box and left for 1 hour to ensure uniform 

moisture content. The segmented box was then filled to a depth of 2cm with 

deionised water. Each sieve holding the aggregates was carefully and slowly 

immersed into a segment within the box and left for 5 minutes. Each sieve was 

then completely lifted out of the water and re-immersed slowly over 2 seconds. 

The lifting and re-immersion process was carried out a total of 5 times. Each 
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sieve and any remaining soil material were completely removed from the water 

and placed on a work bench. A visual assessment of the percentage soil 

remaining on the sieve was used to assign a stability class to each aggregate 

surface (Table 5.3-1). 

Table 5.3-1 Field test kit stability classes. Modified from Herrick et al. (2001) 

Stability Class Criteria for assignment to stability class 

5 <10% soil remaining on sieve 

4 10-25% soil remaining on sieve 

3 25-50% soil remaining on sieve 

2 50-75% soil remaining on sieve 

1 75-100% soil remaining on sieve 

As this is a visual assessment of percentage soil aggregate remaining it is 

important to be consistent and to use the same person in the assessment each 

time. 

5.3.3.4 Water droplet impact method of aggregate stability 

Aggregate stability testing via water drop impact is carried out either by exposing 

the aggregates to simulated rainfall, as described by Lovell & Rose (1988) and 

Loch (1994), or by allowing single water drops to fall onto individual aggregates 

(Farres & Cousen, 1985). The single dropper test originated with work by 

McCalla (1944). The method has been used and developed by Smith & Cernuda 

(1951), Low (1954), Bruce-Okine & Lal (1975), Bergsma & Vaienzuela (1981) 

and Farres & Cousen (1985). The premise of this method is to place an aggregate 

over an aperture of known size and allow individual water droplets to fall 

systematically onto the aggregate. When the aggregate falls through the aperture 

it is considered eroded or destroyed. The number of water droplets it takes to 

destroy the aggregate is noted, and through this comparisons can be made 

between aggregates (Rahim 1990). 
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When using drop forming devices it is important to obtain a consistent fall rate, 

with uniform sized droplets. The problem of drift of the falling drops is 

associated with water drop devises and is exacerbated at higher drop heights. 

Work by Gunn & Kinzer (1949) and Mutchler (1965) attempted to reduce drift in 

flight and limit droplet spin, to increase the number of droplets hitting an 

aggregate. They achieved this by grinding off the points of the drop forming 

needles. Drift and droplet spin are also important factors when using a rain tower. 

Drift is especially important as rain towers are usually higher than single dropper 

apparatus and so the vertical raindrop fall zone should be enclosed to limit the 

effect of wind on drift.  

Raindrop size is also important and is dependent on the type of drop-former used 

(glass burette, capillary tubing or hypodermic needle). It is best to obtain a drop 

size that is as close to natural rainfall (Laws & Parsons 1943). The median drop 

size (D50) is usually used, but this varies with rainfall intensity. A typical rainfall 

event in the UK would have a D50 of between 1-2 mm (personal communication; 

R.J. Rickson, 2005). Drop height is another important factor, as this affects the 

fall velocity and thus energy of the drop to disrupt the target aggregate. To 

simulate natural rainfall, drops should fall as close to terminal velocity as 

possible. Hudson (1964) highlighting work by Laws & Parsons (1943) showed 

that a drop height of 8m is sufficient for a 4mm diameter droplet to reach 95% of 

its terminal velocity.  

A rain tower uses multiple needles to simulate a rainfall event of known 

intensity, which is controlled by the number of needles used and the head of 

water above them. The head of water must be constant to maintain pressure and 

rate of droplet formation. In both rain tower and single dropper tests it is 

important that the chemistry and temperature of the water used to simulate 

rainfall are constant. The water should be clean and treated to remove any salts, 

dirt and certain chemicals like calcium, to prevent needle blockage. The water 

used in this experiment was tap water which had gone through a reverse osmosis 
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process, which removes all salts. Work by Barton (1994) showed that water 

treated in this way did not affect aggregate stability results and gave similar 

results to those using natural rain water. 

In this investigation a gravity fed rain tower was used to determine aggregate 

stability via water drop impact. Aggregates were subjected to artificial rainfall 

generated from a 9m high tower. The height of the tower ensured that a high 

percentage of droplets would reach terminal velocity (Low 1954). At the top of 

the tower a tray housing 860 hypodermic needles is filled with water at a 

constant rate. The hypodermic needles were gauge size 24 (0.559 mm (Jensen 

Global 2006), producing water droplets large enough to overcome surface 

tension. A fine mesh was placed 1m below the needles to split the falling drops 

into randomised, smaller droplets. The rainfall intensity was altered by the 

number of needles which were left open (for details on the layout of the needles 

left open see Appendix G, and the height of water above the needles, which was 

set at 16mm by means of a weir at the exit point of the tray. Before the 

aggregates were tested the rainfall intensity and drop size distribution were 

calibrated. 

5.3.3.4.1 Rainfall intensity calibration 

The rainfall intensity of the rainfall tower was calibrated by placing a 0.5m2 grid 

under the rainfall target area, with catch cups of known diameter placed 

uniformly on the grid. The catch cups collected rainfall during a known period of 

time, and the amount of rainfall retained was measured. By calculating rainfall 

intensity across the grid, the spatial distribution of the rainfall was identified. The 

mean rainfall intensity was measured as 35mm hr-1 (the results can be found in 

the Appendix G). 

5.3.3.4.2 Rain drop size distribution calculation 

The rain drop size distribution was also measured to determine the D50 of 

droplet size distribution and thus kinetic energy of the rainfall event. The method 
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used was modified from the flour pellet method by Hudson (1964). This has been 

previously used in chapter 4 and so detailed descriptions of this method can be 

found in section 4.3.4. The D50 calculated in this experiment was 0.86mm, which 

is slightly low for temperate conditions, where the D50 of rainfall is estimated to 

be between 1-2mm (personal communication; R.J. Rickson, 2005). The 

maximum drop size recorded was 4.53mm (for more detailed see Appendix H). 

5.3.3.4.3 Aggregate stability testing 

A sub-sample of pre-treated aggregates was taken before testing from each 

sample to determine initial moisture content. This was achieved by taking 10g 

[±0.5] of air dried aggregates, 3.35-5mm (that had been pre-treated as per the 

method in section 0) and saturating them in 20ml of deionised water for 30 

minutes, making sure each aggregate was fully immersed. This was sufficient 

time for even large aggregates to become saturated. 

The saturated aggregates were placed in the centre of a 0.5mm sieve with a 

receiver. This sieve size was used to allow comparison with the results gained 

from the wet sieving method. Four sieves (Plate 5.3-3) were placed under the 

rainfall tower at any one time, and a sample of aggregates was assigned to each 

sieve in a randomised design. Saturated aggregates were then rained on for 17 

minutes (allowing comparison with the wet sieving method) at an intensity of 

35mm hr-1 which represents a 1-6 year storm (NERC 1975). This intensity was 

also chosen to allow comparisons to work undertaken in chapter 4. After rainfall 

application, soil material remaining on top of the sieve was washed off into a 

weighed tin. The contents of the tin were then oven dried at 105°C for 48 hours 

and re-weighed. Soil and water collected in the receiver were also collected into a 

weighed tin and oven dried in the same way. Once the tins were re-weighed the 

soil from the receiver was discarded, but the soil collected on the sieve was 

flushed through a 0.5mm sieve. This was done to separate aggregates from any 

coarse primary particles. The latter was held on the sieve and collected into a tin, 

oven dried at 105°C for 24 hours and re-weighed. This weight was then 
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subtracted from the total weight of material held on the sieve following exposure 

to rainfall, to calculate the percentage of aggregates retained on the 0.5mm sieve 

compared to the initial mass of aggregates (taking into account initial moisture 

content). 

 

 

Plate 5.3-3 Rain tower apparatus; 
needle tray (top left), rainfall 
catch area (top right), and four 
sieves with saturated aggregates 
ready for testing (left) 

5.4 Results 

This section will show all data relating to aggregate stability in relation to the 

previously set out objectives. The data will be separated out into method and site 

location. A description of the statistical analysis carried out can be found in 

section 2.2. 
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5.4.1 Hypothesis one 

It was expected that soil from the conventionally managed plots would have a 

different aggregate size distribution, with lower mean weight diameter (MWD) 

compared to soil from the two conservation treatments (SOWAP or Farmer’s 

Preference).  It was also expected that there would be no difference in relative 

treatment ranking for both dry and wet mean weight diameter (MWD) results. 

5.4.1.1 Dry aggregate size distribution 

At Loddington the percentage of dry aggregates retained by the different sieve 

sizes was statistically (p<0.001) different between treatments (Figure 5.4-1). At 

Tivington the results also showed a significant difference (p<0.001) between 

treatments (Figure 5.4-2). At both site locations significant treatment differences 

were observed for both the entire sampling period and for individual seasons. 

It was expected that aggregates from the conventionally treated plots (C) would 

have a lower percentage of large sized aggregates in comparison to the other two 

conservation treatments; SOWAP (S) and Farmer’s Preference (F). This was the 

case at Loddington where there was a tendency for there to be more aggregates 

sized 0.15mm to 1mm compared to the conservation treatments. For both 

individual and combined seasons most significant treatment differences at 

Loddington occurred in the proportion of aggregates sized 4mm and above.  

However, at Tivington this was not the case, and there was a tendency for the 

proportion of aggregates between 0.15 and 4mm to be lower from the 

conventional treatment compared to the SOWAP conservation treatment. Also 

the proportion of aggregates of 5mm and above from the conventional treatment 

was much higher than for the SOWAP treatment, which was the opposite of what 

was expected. 
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Figure 5.4-2 Tivington: aggregate size distribution for the entire sampling period - 
March 04 to August 05. Floating numbers denote significant differences between: 
1=SOWAP and Farmer’s Preference, 2=SOWAP and conventional and 
3=Farmer’s Preference and conventional.  

5.4.1.2 Dry mean weight diameter 

The dry mean weight diameter was calculated from the dry aggregate size 

distribution data. It was expected that the mean weight diameter of aggregates 
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from the conventional plots would have a lower MWD compared to the two 

conservation treatments; SOWAP and Farmer’s Preference. At Loddington over 

the entire sampling period, treatment differences in dry MWD were found 

(p=0.017). The only sampling date where the conventional treatment dry MWD 

was not significantly lower than either or both of the conservation treatments was 

in March 05 (under spring beans). At Tivington treatment differences were also 

found (p<0.001), but the opposite trend to Loddington was found. The dry MWD 

of aggregates from the conventional treatment was higher than for the SOWAP 

conservation treatment over the entire sampling period and at both sampling 

dates. 
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Figure 5.4-3 Loddington: Dry MWD. Letters denote significant differences. 



  

- 197 - 

0

1

2

3

4

5

6

C S F
0
1
2
3
4
5
6
7

C S F

0

1

2

3

4

5

6

C S F

a
b

a

bb
ab

aa

March 05

April 04 – March 05

M
W

D
 (m

m
)

Conventional

SOWAP

Farmer’s Preference

Treatments:

September 04trial 1 trial 2

mean

M
W

D
 (m

m
)

 
Figure 5.4-4 Tivington: Dry MWD. Letters denote significant differences. 

5.4.1.3 Wet Mean Weight Diameter 

The wet mean weight diameter was calculated from the aggregate stability wet 

sieving data.  It was expected that the mean weight diameter of aggregates from 

the conventional plots would have a lower MWD compared to the SOWAP and 

Farmer’s Preference treatments. This was the case at Loddington, with all three 

treatments having significantly different wet MWD during the September 04 

sampling. The conventional treatment had the lowest mean wet MWD of all 

results (p<0.001). This was also the trend in April 04, although differences were 

not significant. Results from Tivington showed significant differences between 

all treatments for the soil sampled in September 04, and when considering the 

mean over the entire sampling period (p<0.001). The wet MWD from the 

conventional plots was lower than the SOWAP conservation treatment, but not 

the Farmer’s Preference treatment. 
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Figure 5.4-5 Loddington: wet MWD. Letters denote significant differences. 
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Figure 5.4-6 Tivington: wet MWD. Letters denote significant differences. 
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5.4.1.4 MWD method comparison 

It was expected that the ranking of mean weight diameter (MWD) for all 

treatments would be the same, irrespective of method used (i.e. dry or wet 

sieving).  MWD for each treatment as derived from the dry and wet methods 

were significantly (p<0.001) different at each site (Figure 5.4-7). The treatment 

ranking of MWD was similar for both methods at Loddington (Figure 5.4-8), 

with the highest MWD from soil derived from the Farmer’s Preference treatment. 

However, at Tivington (Figure 5.4-8) there was no consistency between methods. 

The wet method of MWD showed the Farmer’s Preference had the lowest MWD 

and the SOWAP treatment had the highest MWD. The opposite was true using 

the dry MWD results. 
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Figure 5.4-7 wet and dry method comparison of MWD over the entire sampling 
period 
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Figure 5.4-8 MWD method comparison (wet and dry) – mean relative treatment 
ranks, over the entire sampling period 
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5.4.2 Hypothesis two 

It was expected that soil surface aggregates from conventionally treated plots 

would be more erodible (having fewer stable aggregates) in comparison to soil 

from conservation treated plots. This hypothesis was tested through the results 

from three different methods of aggregate stability testing; raindrop impact, wet 

sieving and a field test kit. To allow fair comparisons to be made, the size of the 

aggregates tested were between 3.35 and 5 mm diameter (section 4.3). 

5.4.2.1 Gravity Fed Rain Tower 

At Loddington (Figure 5.4-9) there were no treatment effects on the percentage 

of soil retained on a 0.5mm sieve, implying there are no differences in the 

stability of aggregates from the three different treatments. Results from April 

2004 shows a trend of fewer stable aggregates being present from the 

conventional plots in comparison to both of the conservation treatments, which 

supports the stated hypothesis. At Tivington, again no statistically significant 

treatment differences were found (Figure 5.4-10). During March 2004 a trend 

was visible with the conventional treatment tended to have a higher percentage of 

stable aggregates compared to the conservation treatments, in particular when 

compared with the Farmer’s Preference treatment. This is opposite to 

Loddington. However, it must be noted that neither trend found at either site was 

prominent. 
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Figure 5.4-9 Loddington - percentage stable aggregates following raindrop impact 
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Figure 5.4-10 Tivington - percentage stable aggregates following raindrop impact 
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5.4.2.2 Wet Sieving  

At Loddington (Figure 5.4-11) there were significant (p<0.001) treatment 

differences in the percentage stable aggregates when results were compared for 

each sampling date and the overall mean (i.e. over the entire sampling period). 

The lowest percentage of stable aggregates after wet sieving came from the 

conventionally treated plots in comparison to at least one conservation treatment.  

At Tivington treatment significant effects on aggregate stability were also found 

(p<0.001). Overall (mean over the entire sampling period) and from September 

2004 sampling, aggregates from the conventional plots had fewer stable 

aggregates than the SOWAP treatment (Figure 5.4-12), but had more stable 

aggregates compared to the Farmer’s Preference treatment.  The results from 

both sites support the stated hypothesis that fewer stable aggregates would be 

found on the conventional plots. However, this was not always in comparison to 

both conservation treatments.  
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Figure 5.4-11 Loddington - percentage stable aggregates after wet sieving 
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Figure 5.4-12 Tivington - percentage stable aggregates after wet sieving 

5.4.2.3 Field Test Kit 

At Loddington treatment effects on the percentage stable aggregates were found 

in April and September 04, and for the mean over the entire sampling period 

(p<0.001). In all these case there were fewer stable aggregates from the 

conventional treatment compared to both of the conservation treatments (Figure 

5.4-13). At Tivington (Figure 5.4-14) treatment effects on the percentage of 

stable aggregates were found in September 04 (p=0.005) and for the mean over 

the entire sampling period (p<0.001). In both cases the percentage stable 

aggregates from the Farmer’s Preference was significantly lower than the 

conventional and the SOWAP treatment. This finding does not support the 

hypothesis that more stable aggregates would be found on the conventional 

treatments when compared with the conservation treatments.  

In conclusion, the results from Loddington (only) support the stated hypothesis 

that fewer stable aggregates will be found from the conventional treatment, 

compared to the conservation treatments. 
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Figure 5.4-13 Loddington - percentage stable aggregates after FTK 
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Figure 5.4-14 Tivington: - percentage stable aggregates after FTK 
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5.4.2.4 Overview of methods of assessing aggregate stability 

At Loddington all three methods of assessing soil aggregate stability support the 

hypothesis that soil surface aggregates obtained from conventionally treated plots 

will be more erodible in comparison to aggregates from conservation treated 

plots. At Tivington only two out of the three methods (the two immersion based 

methods) support the hypothesis, that the conventional treatment has fewer stable 

aggregates than the conservation treatments, although this was only when 

compared with the SOWAP treatment. The hypothesis was not supported in 

terms of proportion of stable aggregates when comparing the conventional and 

Farmer Preference treatments. 

5.4.3 Hypothesis Three 

Substantial differences in the absolute results of aggregate breakdown between 

aggregate stability methods were expected. The immersion based methods were 

expected to result in lower percentages of stable aggregates compared to the rain 

drop impact method, due to the relative severity of disruptive forces operating. 

However, the relative ranking of aggregate stability between treatments was 

expected to be consistent. 

At Loddington (Figure 5.4-15) there were large absolute differences in the 

percentage stable aggregates using the different methods, especially when 

comparing the immersion and rain drop impact methods. The two immersion 

methods (wet sieving and field test kit, FTK) were very similar in treatment 

effect on aggregate breakdown. All three methods showed the same trend in 

treatment ranking of aggregate stability, with the lowest percentage stable 

aggregates from the conventional treatment and the highest percentage stable 

aggregates from the Farmer’s Preference treatment, as shown in Table 5.4-1.  
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Figure 5.4-15 Loddington method comparison 
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Figure 5.4-16 Tivington method comparison 

At Tivington (Figure 5.4-16) there were also substantial differences in absolute 

results between the immersion and rain drop impact methods, with percentage 

stable aggregates from the rain drop impact (rain tower) method being the 
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highest. Similar to Loddington, the two immersion based methods (wet sieving 

and FTK) showed the same treatment effect on aggregate stability, with the 

lowest percentage stable aggregates coming from the Farmer’s Preference 

treatment and the highest percentage from the SOWAP conservation treatment. 

Results from the rain tower method also show a trend of the Farmer’s Preference 

treatment having the lowest percentage of stable aggregates, but the highest 

percentage was from the conventional treatment, rather than the SOWAP 

conservation treatment as might have been expected (Table 5.4-1) 

To summarise the results, the relative ranks of the different treatments can be 

found in Table 5.4-1. 

Table 5.4-1 Treatment ranking under different methods of stability analysis (1 = 
highest % stable aggregates; 3 = lowest % stable aggregates) 

Ranking Site Date Method 

Conventional SOWAP 
Conservation 

Farmer’s 
Preference 

Loddington Mean 
(n = 3) 

Rain Tower 3 2 1 

Loddington Mean 
(n =3) 

Wet Sieving 3 2 1 

Loddington Mean 
(n=3) 

Field Test Kit 3 2 1 

Tivington Mean 
(n=2) 

Rain Tower 1 2 3 

Tivington Mean 
(n=2) 

Wet Sieving 2 1 3 

Tivington Mean 
(n=2) 

Field Test Kit 2 1 3 

5.4.4 Additional information 

Correlations were carried out between aggregate stability and MWD results with 

soil properties and surface characteristics to help explain observed results. The 

results are presented in Table 5.4-2 for Loddington and Table 5.4-3 for 

Tivington. 
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Table 5.4-2 Loddington: Correlations of aggregate stability and MWD with soil 
and surface properties (p<0.05) 

Factor Wet sieving % 
stable 

RT % 
stable 

FTK % 
stable 

Wet 
MWD 

Dry 
MWD 

Dry bulk density x x x x x 

Volumetric MC x x x x x 

Gravimetric MC x x x x x 

Clay 0.61 x x 0.45 x 

Bare soil x x x x x 

Residue x x x x x 

Surface roughness x x x x x 

Organic matter x 0.52 x x x 

Organic carbon 0.51 x 0.48 x x 

x denotes non-significant correlations 

Table 5.4-3 Tivington: Correlations of aggregate stability and MWD with soil and 
surface properties (p<0.05) 

Factor Wet sieving % 
stable 

RT % 
stable 

FTK % 
stable 

Wet 
MWD 

Dry 
MWD 

Dry bulk density x x x x x 

Volumetric MC -0.5 x -0.64 x x 

Gravimetric MC -0.55 x -0.58 x x 

Clay x x -0.52 x x 

Bare soil 0.55 x x x x 

Surface roughness x x -0.52 x x 

Organic matter x x x x x 

Organic carbon x x 0.66 x x 

x denotes non-significant correlations  

5.5 Discussion 

5.5.1 Findings in relation to the original objectives 

Results of MWD and stability will be related to field soil and surface properties 

measured at the time of sampling. These results have not been presented in the 

main text but are shown in the Appendix I.  The soil properties and surface 
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characteristics results presented in Appendix I are those where significant 

treatment differences existed. These results are from season 1-3 at Loddington 

and season 2 at Tivington, and therefore differ to the soil and surface properties 

presented in chapter 3. As such the results present in Appendix I and the 

erodibility measurements presented in this current chapter were carried out over 

the same temporal scale. 

5.5.1.1 Objective one: soil management treatments affect surface soil 

aggregate size (and) distribution 

It was predicted in hypothesis one that soil from the conventionally managed 

plots would have a different aggregate size distribution to those from the two 

conservation treatments. It was expected that the soil from the conventional 

treatments would have a higher percentage of smaller sized aggregates as a result 

of greater soil breakdown by the increased number of cultivation practices. This 

statement is supported by the data from Loddington. At Tivington this statement 

is also supported, but only when the conventional and Farmer’s Preference 

conservation treatments are compared.  

This relative increase in smaller sized aggregates would imply that the mean 

weight diameter (MWD) from the conventional treatment would be lower 

compared to the conservation treatments. In addition this lower MWD would 

occur under both dry and wet methods of determination.  

At Loddington where significant differences existed, MWD was lower than at 

least one of the conservation treatments for dry MWD and both conservation 

treatments for wet MWD. The lower MWD for both methods relates to two 

factors, a) increase in mechanical manipulation of the soil surface from tillage 

and b) treatment induced changes on soil properties. Soil conventionally treated 

was subjected to increase tillage practices comprising of primary and secondary 

cultivation, part of which included soil inversion. The resultant effect of this 

would have been a mechanical breakdown of soil clods and larger soil aggregates 
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into smaller aggregates to increase the seed / soil contact ratio. This effect of 

tillage was operating at both site locations. This mechanical manipulation also 

would have led to changes in soil and surface properties.  

It was found that soil from both conservation treatments had greater contents of 

organic matter and clay. Both of these properties are known to increase aggregate 

stability by increasing cohesive strength between soil particles (Le Bissonnais et 

al. 2002; Levy & Mamedov 2002; Robinson & Phillips 2001). Organic matter 

also has the affect of decreasing aggregate wettability by the creation of a 

hydrophobic organic film (Ellerbrock et al. 2005). The latter is important for the 

wet method of MWD, by reducing aggregate wettability, the risk of slaking is 

reduced. Changes in these soil properties would have been the result of different 

tillage regimes. The conventional treatment had increased number of cultivations 

including soil inversion which would have buried fertile organic top soil. These 

changes in soil properties influence stability and therefore relate to MWD. The 

increase in stability of soil from one treatment over the other means the 

resistance to breakdown is higher. As a result of less aggregate breakdown, a 

relatively higher percentage of large aggregate sizes would be present. There are 

large differences in destructive energy being applied between the two methods 

(wet and dry) which raises the question of which MWD method better represents 

the distribution of aggregate sizes of field soil? This is discussed later in the 

discussion.  

As expected the absolute values from the wet method of MWD were lower than 

the dry method. The wet method is more destructive on soil aggregates, causing 

more breakdown. The treatment ranking found for both wet and dry methods 

were the same when the means over the entire sampling period were compared. 

At Tivington the results from the wet method of MWD were again expectedly 

lower compared to the dry method. However, what was unexpected were very 

different treatment ranking of stability between the dry and wet methods. Results 

from the dry method showed that the mean (over the entire sampling period) 
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MWD was significantly less from the SOWAP treatment compared to the two 

remaining treatments (C and F). This results was opposite from the wet method, 

where MWD was significantly greater from the SOWAP treatment. These 

conflicting results can be explained by soil properties. The clay content of the 

three treatments reflects the pattern seen under the dry method, and the organic 

matter content follows a similar pattern to the wet method. Both organic matter 

and clay content are associated with an increase in aggregate stability. It would 

appear that clay content had a greater effect on aggregate stability under dry 

conditions compared to organic matter under wet. Organic matter reduces the risk 

of slaking by decreasing wettability rate by the presence of a hydrophobic film.  

The results from Tivington highlight that different processes aggregate 

breakdown are occurring, that of abrasion under the dry MWD method and 

slaking during the wet method. This raises the question as to which method (wet 

or dry) better represents the MWD of field soil. The answer to this is dependent 

upon what is being investigated; before or after erosion. The dry method better 

represents the MWD of dry soil conditions which have been subjected to light 

rainfall or wind erosion. The wet method of MWD simulates breakdown of 

aggregates after a heavy storm leading to saturated or flooded conditions causing 

maximum amounts of erosion. It is believed that they dry method of MWD better 

represents the affect of cultivation as best soil management encourages farmer’s 

to cultivate during dry periods, when the ground is hard.   

5.5.1.2 Objective two: soil management treatment affects surface 

aggregate stability 

Hypothesis two proposed that surface soil aggregates from conventionally treated 

plots would be more erodible, with proportionately fewer stable aggregates, in 

comparison to conservation treated plots. This statement was supported by the 

results from Loddington when aggregates were tested using the immersion based 

methods, but not for the raindrop impact method. This method resulted in no 

statistically significant treatment differences. At Tivington, the hypothesis could 
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be supported when overall treatment means generated from the immersion based 

methods were compared, but only when the conventional treatment was 

compared with the SOWAP conservation treatment (and not the Farmer’s 

Preference treatment). The raindrop impact method showed no significant 

treatment differences.  

The differences in stability between treatments could be explained by measured 

soil and surface properties. The conventional treatment was shown to be the least 

stable at Loddington. This was supported by significantly lower soil contents of 

organic carbon, matter and clay (p<0.001). All of these soil properties have been 

linked to aggregate stability and wettability, as mentioned in hypothesis one.  

The treatment ranks of aggregate stability at Tivington differed to those at 

Loddington. At Tivington over the entire sampling period the Farmer’s 

Preference treatment had the fewest stable aggregates, above this was the 

conventional treatment and the most stable aggregates was found in soil from the 

SOWAP treatment. Relating soil properties to these results was less clear cut. 

Significant differences were found in soil content of organic carbon, organic 

matter, silt and clay. However, the differences in aggregate stability between 

treatments were not reflected in the difference from any one soil properties but a 

combination of all of them. A larger percentage of stable aggregates from the 

SOWAP treatment in comparison to the conventional treatment could be 

explained by increases in particle cohesion brought about by greater soil contents 

of organic carbon. However, surprisingly soil from the SOWAP treatment also 

had significantly lower clay and organic matter contents to the conventional 

treatment, both of which would indicate a lower stability but this was not the 

case. This also highlights that organic carbon content is not always directly 

linked to organic matter content. The percentage of stable aggregates was 

significantly higher from the conventional treatment compared to the other 

conservation treatment – Farmer’s Preference. This relationship can be supported 
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by higher organic matter contents and lower silt content; both implying increased 

stability through particle cohesion.  

The results from both sites indicate that the relationship between soil properties 

and aggregate stability cannot be generalised. Seasonal fluctuations in these soil 

properties were also investigate but did not clarify the found treatment difference 

in aggregate stability. This implies other factors and processes are operating. The 

presence of an active microbial community has been shown to increase soil 

organic matter content, soil aggregation and aggregate stability. Investigations 

were carried out on soil from both site locations in research carried out by Allton 

(2006). It was found that the microbial community size was significantly larger 

on the conservation treatment compared to the conventional treatment. However, 

this was only found at Loddington and not Tivington. What is not known is the 

changes in the micro-biological community from when the samples were 

removed from the field, through to when the samples were air dried and then 

during storage before sample were tested for stability. Although soil from both 

sites underwent the same processes, the inherently different soil properties of 

each site (e.g. organic matter content), may have resulted in a different microbial 

response.  

5.5.1.3 Objective three: implications of different methods to measure 

aggregate stability 

It was expected that there would be substantial differences in the absolute results 

of percentage stable aggregates between the test methods used, but that the 

relative treatment rankings would be consistent. This was the case at Loddington 

where percentage stable aggregates were much higher under the raindrop impact 

(rain tower) method compared to the two immersion based methods. Relative 

treatment ranking was the same for all three methods, although the treatment 

differences were not significant under the rain tower.  At Tivington there were 

also large absolute differences between the percentage stable aggregates 

measured using the immersion and the rain drop impact methods. The relative 
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treatment ranks were the same for the two immersion based methods, but these 

ranks were different to those from the raindrop impact test (although treatment 

differences were not significant under the rain tower). In summary, the statement 

that relative treatment ranks are consistent, irrespective of test method cannot be 

supported by the results from Tivington, but the Loddington results do reflect the 

expected relationships. 

The substantial difference between immersion and rain drop impact methods of 

testing aggregate stability was expected due to the very different forces being 

applied to the aggregates. The rain drop impact method simulates more closely 

natural rainfall including processes of detachment and splash erosion. Splash 

erosion is highly destructive compared to other erosion processes such as 

overland flow (Morgan 2005). However, the processes of fully immersing 

aggregates in water is more destructive due to the explosive affects of fast 

wetting as water is forced into air filled pores (Lyles et al. 1974; Emerson 1954). 

The rate at which this occurs is affected by soil properties, as shown previously 

in the discussion. Clay and organic matter content will influence the cohesive 

strength between soil particles and the wetting rate of soil aggregates; although 

the affect of these properties will be common for both methods. 

The relationship between tillage treatment and aggregate stability varies between 

the methods used. This raises the important question of which method is the most 

appropriate to assess treatment differences in terms of aggregate stability. The 

field test kit (FTK) and the wet sieving methods produced similar results. This is 

not surprising as the FTK method is a simplified version of wet sieving; and both 

are immersion based methods. Therefore the consideration to make is between 

immersion and rain impact methods. This decision should be made in relation to 

the hydrological processes operating in the field. 

Immersion based methods simulate flooding conditions. Therefore, results gained 

represent an extreme rainfall event, when the soil is totally immersed in water 

and saturated. This technique however does not simulate the impact of rainfall on 
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the soil surface. The other disadvantage of using immersion methods is that each 

aggregate is tested individually, and as such are spatially isolated from other 

aggregates. Again, this does not represent field conditions and processes (Plate 

5.5-1). Individual aggregates are also used during the rain impact method (rain 

tower), but when the saturated aggregates are rained on they break down and 

form a surface seal (Plate 5.5-2). This is representative of processes that actually 

occur during rainfall on an in situ field soil.  

Plate 5.5-1 after wet sieving Plate 5.5-2 after rain fall under the rain 
tower 

This study showed that the results generated between the two immersion based 

methods (wet sieving and field test kit) were very similar. Therefore, the field 

test kit could be a useful indicator of erodibility, which is quick and easy, and can 

be used in the field. This has important future implications which are discussed 

later on. 

5.5.2 Discussion beyond the set objectives 

As part of the design process of the methodology, the relationship between 

aggregate size and stability was raised. Work by Elliot (1986), Kay (1990) and 

Bearden & Petersen (2000) show changes in soil properties (organic carbon, 

porosity and soil biota including plant roots, respectively) in relation to aggregate 

size. This would therefore have implications on aggregate stability. Six et al. 

(2000) highlights the fact that measuring aggregate stability on a specific 

aggregate size does not represent the soil as a whole. This was an important point 
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to consider. Initially in the method design the use of a whole soil could not be 

used as this investigation was specifically compared differences between 

treatments. A soil sample representing the “whole soil” could not be defined and 

therefore could not be replicated. Therefore, an aggregate range was chosen 

based on work by others. As stated in the section 5.3, a test was carried out to 

compare aggregates size to stability, to identify if any relationship did exist. The 

results (Appendix J) of this test contradicted the general theory by showing that 

there was no significant difference between aggregate size and stability. 

However, it should be noted that this test was carried out under rain drop impact 

and not the commonly used wet sieving method. This again links to previous 

discussions on the use of different methods of stability testing in relation to the 

set out objectives. This test was carried out using the rain drop impact method 

because this better simulates natural rainfall to gain a better understanding of the 

erosion processes occurring at the field scale, which is investigated in chapter 3 

and 4.  

It could still be argued that although this additional work looked at the 

relationship of aggregates size and stability this still does not represent a whole 

soil (Six et al. 2000). This point raised by Six et al. (2000) was tested in this 

current research through a pilot run to try and address this question. Soil samples 

obtained in September 2004 at both sites were used in this pilot run, representing 

the first sampling data common to both sites. The method of wet sieving (as 

described previously in section 5.3.3.3.1, was used as is commonly used in 

aggregate stability research and is a relatively quick (in comparison to the gravity 

fed rain tower) test. Aggregates sized 3.35-5mm and a whole soil sample were 

compared. The whole soil sample was taken from the pre-air dried samples as 

used in section 5.3.3, before sieving for classes was done. The whole soil and 

3.35-5mm samples were tested using an experimental random design 

incorporating soil from all three soil management treatments. A summary of the 

results can be found in the Appendix J. It was found that at Loddington that there 
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was no statistically significant difference between the percentage of stable 

aggregates retained from aggregates sized 3.35-5mm or a whole soil sample. This 

was case when the two aggregate classes were compared under all four statistical 

analyses, define in Table 5.5-1. At Tivington, there significant differences 

between aggregate sizes were found when compared under analysis a) and d) as 

shown in Table 5.5-1. This was due to a significantly higher percentage of stable 

aggregate retained on the 2mm aperture sieve from whole soil sample from the 

SOWAP treatment.  

These exceptionally high results (in comparison to the other treatments and 

aperture size) can be related to the significantly higher organic carbon content on 

the SOWAP treatment. Six et al. (2004) observed that as aggregate size increases 

the concentration of carbon rose. This implies that organic carbon is more 

important in stability in the whole sample which contains aggregates larger than 

5mm i.e. larger that than found in aggregates sized 3.35-5mm. It should also be 

noted that this work was carried out on soil taken from only one sampling date 

and does not take into account temporal variation.  

Table 5.5-1 Statistical analysis of difference in percentage stable aggregates from 
aggregates sized 3.35-5mm and a whole soil sample. 

a) For differences between aggregate classes of percentage stable aggregates 

>0.5mm, irrespective of treatment difference i.e. when the mean was taken 

from the results of all treatments; 

b) For differences between aggregate classes of percentage stable aggregates 

>0.5mm irrespective of treatment at different sieve aperture sizes i.e. the 

mean result from all treatments at each sieve aperture; 0.5, 1.0 and 2.0mm. 

c) For differences between aggregate classes of percentage stable aggregates 

>0.5mm in relation to treatment effects. 

d) For differences between aggregate classes of percentage stable aggregates in 

relation to treatment effects at different sieve aperture sizes i.e. the mean 

result for each treatment at each sieve aperture; 0.5, 1.0 and 2.0mm. 
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This work highlights that initial aggregate size (i.e. whole soil versus 3.35-5mm 

sub-sample) could have an effect on the stability results obtained, but that this 

was only the case when dealing with soil with high organic carbon content. This 

study does reinforce the need to run pilot studies on test soil to identify if 

stability will be affected by aggregate size. 

5.5.3 Implication of this study 

The implication of this study is that the adoption of conservation tillage can 

reduce soil erodibility and therefore has potential to reduce the risk of water 

erosion. The research also highlighted the influence of different aggregate 

stability methods on the results obtained, in terms of relative treatment ranks and 

absolute differences. The use of either immersion or rain drop impact based 

methods should be chosen in relation to the hydrological processes being 

investigated, i.e. a flooding events or rainfall. 

 This research has also highlighted that established theories on the relationship 

between aggregate size and stability do not always apply. It is important not to 

assume that this theory applies to all soils. It is vital that before tests of aggregate 

stability are undertaken, pilot investigations should be carried out to identify 

what relationships exist. 

A field test kit can be used as a quick and cheap alternative to wet sieving. Both 

methods are based on immersion of aggregates in water to assess stability. The 

field test kit yields very similar results to those of the wet sieving method in 

terms of relative treatment differences. The former method is easily accessible to 

all and has potential to be used in important on-site assessment of soil stability. 

One example of this is greater quantification of erosion risk as part of a Soil 

Management Plan required in environmental stewardship schemes. 
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5.5.4 Future research recommendations 

It was found that the rain drop impact method generated no treatment differences 

unlike immersion based methods. Further research is needed to understand the 

lack of significant results. It is believed that this is due to the saturated starting 

conditions of the test aggregates. This was done to allow comparison with the 

immersion based methods. However, in the field, aggregates are not in a 

permanent state of saturation. Therefore it would be advantageous to carry out 

further experiments using a variety of starting conditions of test aggregate in 

conjunction with the gravity fed rain tower. 

It would be advantageous to increase the number of samples used in the 

aggregate size and stability methodology to include more seasons. This would 

gain a better understanding of the influence of cropping regimes and timings 

have on soil properties and therefore on aggregate stability. This work should be 

expanded upon to include further tests on the relationship between aggregate size 

and stability in relation to tillage induced changes in soil properties.  

Previous work by Kemper & Rosemau (1986) looked at the effect of sampling 

(equipment used, transportation and storage) in relation to aggregate stability. 

However, more research is required into the effect of sampling procedure on 

stability results in relation to different tillage treatments. For example, a 

treatment which promotes fungal growth would be expected to increase 

aggregate stability, but when samples are removed from the ground, stored and 

treated this benefit might be lost, as the biological connectors are broken down 

by handling. Changes in moisture content are very important to soil erodibility 

(Morgan 2005). Different tillage treatments can lead to changes in soil moisture, 

for example by the application of surface residues. These are beneficial for 

preventing drought conditions during summer months. However, the moisture 

content will influence the amount of damage cause by the action of removing the 

soil sample from the ground. In addition further work is required to investigate 

the relationship between soil properties (including soil biology) at the time of 
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sampling and the changes over time during storage until the samples are tested 

for stability. 

5.6 Conclusion 

It was discovered that the adoption of conservation tillage instead of 

conventional cultivation affected the mean weight diameter (MWD) and 

aggregate stability. The effect of conservation tillage on MWD and aggregate 

stability was found to fluctuate between site locations due to differences in 

inherent soil properties. However overall findings from both sites can be made 

and are stated in the following. Soils which had been cultivated under 

conventional tillage had lower MWDs caused from the action of primary, 

secondary and inversion tillage. Conventional tillage also led to changes in soil 

properties, specifically a reduction (in the majority of cases) in levels of 

including organic matter, carbon and clay content. A priori reasoning would 

suggest that this would have led to increases in erodibility. This was found to be 

true as measured by the percentage of stable aggregates after stability tests were 

performed. These results were only found when immersion based methods were 

employed. The use of rain drop impact methods resulted in no significant 

differences in stability between treatments. It was concluded that the two types of 

aggregate stability method represent different hydrological conditions – 

immersion based methods characterise soils under flooded conditions or under 

heavy rainfall, while the gravity fed rain tower simulated more closely the impact 

from natural rainfall. The latter of which is important for the comparison to field 

base processes at the two field sites used in this study. 
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6 Spatial Integration 

6.1 Introduction and Background 

The challenge of comparing erosion rates and erosion risk at different spatial 

scales of investigation is a high priority in erosion research today. Previous work 

has shown that comparisons between scales may be possible, but this is rarely 

attempted, and caution should always be exercised. The majority of spatial scale 

comparison research into soil erosion has been based on field scale and above, 

and tends to be model based, utilising data collected from field scale research and 

inputting this into regional, national and in some cases, cross-national scales.  

Extrapolations are often applied in erosion modelling (Smith & Quinton 2000), 

despite the known errors and variability associated with data from different 

spatial scales. Some researchers have attempted to extrapolate results from one 

scale to another with mixed success. For example, work by Amore et al. (2004) 

investigated two erosion models; first an empirical model, the Universal Soil 

Loss Equation (USLE) and the second a physically based model from the Water 

Erosion Prediction Project (WEPP). This work showed that the models were not 

sensitive to the spatial resolution under investigation, however, it should be noted 

that the work only modelled areas from field size and above. Another example of 

spatial scale comparison comes from an investigation by Cerdan et al. (2004) into 

the extrapolation of runoff coefficients between spatial scales. This work utilised 

another model, the STREAM model, which looked into infiltration and overland 

flow parameters at the plot scale. This work also looked at runoff coefficients 

across three different scales; field plot of 500m2 and two catchment areas of 90 

and 1100 ha. This investigation concluded that runoff coefficients decreased as 

the area increased. It was shown that catchment scale results cannot be used to 

represent the sum of the individual fields found within that area. This was 

attributable to a decline in connectivity, which was associated with a decrease of 

arable land within the increased of study area i.e. as the study area increased the 
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percentage of arable land within that area declined therefore the connectivity 

between arable fields reduced. 

This confirms that there are no rules as to the scaling up or down of erosion data. 

It should be noted that models are rarely employed below a field scale, so they 

may be better equipped at coping with field scale erosion processes rather than 

small scale ones. This present study hopes to add to this research field by directly 

comparing actual losses per unit area of soil and runoff, and runoff coefficients 

between field and micro- plot scales. As stated previously, the majority of 

research that has studied erosion at different spatial scales has in the main been 

model based, using data from plots at the field scale and above. Direct 

extrapolation of results from one scale to another is fraught with error and 

uncertainty. When drawing comparisons between field erosion plots and micro-

erosion plots, there are important issues to be considered. These are outlined 

below. 

a) Differences in erosion processes operating at different spatial scales   

There are underlying differences in the erosion processes which are taking place 

at different spatial scales (Imeson & Lavee 1998; Rickson 2006). These 

differences in erosion processes are summarised in Table 6.1-1.  

Raindrop impact is expected to be the dominant erosion process at the micro-plot 

scale, while overland flow and rill erosion will operate at the field scale. Even 

early gully formation is possible. The amount of erosion is related to the 

efficiency of these erosion processes, which has been succinctly presented by 

Morgan (2005) and is summarised here in Table 6.1-2. 

Despite splash erosion being more efficient at soil detachment, the distance 

sediment is transported is very limited, due to the length of splash trajectory and 

hence it transports the least amount of sediment. At the field plot scale overland 

flow is more dominant, and sheet flow is more likely compared with small plots, 

as well as formation of rills. From this it could be assumed that erosion rates 
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would be greater on field plots compared to micro-plots, as more efficient 

processes of sediment transport (channelled flow) are more likely to take place. 

However, deposition fans (Plate 6.1-1) are likely to be present at the field scale 

because of changes in slope gradient and the greater incidence of surface 

irregularities caused by stones, crop residues, and surface micro-topography. 

Such variations are proportionately less on the 1m2 micro-erosion plots At this 

plot size, opportunities for deposition are less, and eroded soil will flow straight 

into the collection system. The difference in deposition between spatial scales 

indicates that sediment production would be greater from the micro-erosion plots.

Table 6.1-1 Scale scales of soil erosion research (modified from Rickson 2006) 

Area Scale*  Dominant processes operating Research 
Technique 

Reference 
(examples) 

mm2 -
cm2 

Nano  Rain splash dominant; overland 
flow / deposition limited. No 
gullies, stream bank erosion or 
mass movements. 

Aggregate 
stability, splash 
cups and 
laboratory trays 

Ellison 1944; 
Morgan et 
al.1998; Yoder 
1936  

m2 Micro  Rain splash and overland flow; 
some deposition. Some to no 
gullying or mass movements. No 
stream bank erosion 

Runoff rig and 
Field plot 

Kamalu 1993; 
Wischmeier & 
Smith 1978 

ha - 
km2 

Meso  Rain splash, overland flow and 
deposition. Gullying and mass 
movements possible. Some to no 
stream bank erosion. 

Field and Sub-
catchment 

Evans & 
Boardman 
1994; Hudson, 
1981  

km2 Macro  Rain splash, overland flow and 
deposition. Some gullying and 
mass movement possible. Stream 
bank erosion. 

Catchment / 
landscape 

Dickinson & 
Collins, 1998 

*dimension descriptors as described by Wickenkamp et al. (2000) 

Table 6.1-2 Efficiency of forms of water erosion (summarised from Morgan 2005) 

Form Mass* Typical 
velocity 
(m s-1) 

Kinetic 
energy 

Energy for 
erosion 

Observed sediment 
transport (g cm-1) 

Raindrops R 6.0 18R 0.036R 20 

Overland flow 0.5R 0.01 2.5 x 10-5R 7.5 x 10-7R 400 

Rill flow 0.5R 4 4R 0.12R 19,000 

*Assumes rainfall mass of R of which 50% contributes to runoff. 
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Plate 6.1-1 Deposition fan in Somerset. Source www.sowap.org 

In summary, the size of the plot under investigation will influence the erosion 

process operating, and hence the amount of soil loss taking place. 

b) Factors affecting erosion vary at different spatial scales      

At the smallest of spatial scales (nano), emphasis is placed on understanding the 

mechanics involved in soil erosion. Early work by Ellison (1944) showed the 

relationship between raindrop impact and soil erodibility by developing the use 

of small, 7 cm diameter splash cups, which isolated rainsplash effects on soil 

detachment and transport. Here, soil properties alone determined the amount of 

erosion measured, independent of any other of the factors affecting erosion. The 

effects of slope length for example on erosion will vary at different spatial scales. 

Micro-erosion plots (in this study 1.5m2) will have a shorter slope length to 

generate surface flow. Hence as the spatial scale increases, the erosion process of 

overland flow will begin to dominate (Rickson 2006). There will also be changes 

in the type of erosion feature between spatial scales as previously shown in Table 

6.1-1 
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c) Methods of generating soil loss vary at different spatial scales  

Comparison between micro-erosion plots and field erosion plots is also 

problematic due to the different methods employed to generate soil loss and 

runoff at the different scales. Rainfall simulators are commonly used for small 

scale erosion assessment. This can be laboratory based using artificially packed 

soil with known physical properties or field samples removed and used under 

laboratory conditions. In either case soil is subjected to artificial rainfall of 

known intensity and duration. Rainfall simulators are also frequently used on 

micro-erosion plots set up within the field, therefore testing natural field 

conditions and processes. Micro-erosion plots (cm2-m2) may also be used 

utilising natural rainfall but this is less common due to the unpredictability of 

natural rainfall events. The next stage up from micro-erosion plots is the use of 

field erosion plots (<ha, Stoosnijder 2005), which in the main rely on natural 

rainfall events. All of these techniques allow direct measurement of erosion via 

the collection of eroded sediment and runoff. However, there has been little work 

comparing the results from these different spatial scales. 

Rainfall simulators in the majority of cases apply a more intensive storm 

compared to natural rainfall events. This is because of the difficulty in simulating 

realistic drop size distributions, kinetic energy and rainfall intensity 

simultaneously, especially at low intensities. This is compounded by the 

challenge of simulating uniform rainfall distributions in space and time. The 

consequence of the higher simulated intensity is an increase in soil bulk density 

and sealing due to rainfall impact on the soil surface, which results in a decrease 

in infiltration, causing higher erosion rates and runoff losses (Bedaiwy & Rolston 

1993). This is supported by previous research, which has shown proportionately 

greater soil losses from the smaller plots in comparison to field plots (Evans 

1993; Boardman & Favis-Martlock 1993). Work by Andraski et al. (1985), 

carried out investigations of soil erosion using different tillage methods (1 plough 

and 3 conservation based) using field erosion plots. They compared the response 
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of each treatment to natural and simulated rainfall. The smallest artificial storm 

was 72±2 mm hr-1 and the soil used was a silt loam, part of the Griswold series. It 

should be noted that only 1 erosion plot replicate per treatment was used, and as 

highlighted by various authors (Morgan 2005) at least 2 replicates need to be 

used to quantify variation. However, despite these experimental limitations, it 

was concluded that the treatment ranking was similar for both the artificial and 

simulated rainfall.  

Given these limitations, it is not surprising that few studies have compared 

erosion rates at a number of spatial scales. However, the present study will 

attempt to integrate the results of soil loss from 3 spatial scales – involving soil 

aggregates (mm2), micro-erosion plots (<2m2) and field erosion plots (>500m2). 

Direct comparison of absolute results between these scales is not possible, as the 

tests on aggregates measure the erodibility of soil rather than actual soil loss. 

Despite this, Barthes et al (2000), successfully correlated aggregate stability with 

runoff from micro-erosion plots. Although this approach is promising, the 

present study will compare the relative rankings of 3 tillage treatments in terms 

of soil erosion/ aggregate breakdown at the different spatial scales as a basis for 

comparison.   

If the rankings remain consistent for the 3 spatial scales, it could be inferred that 

it might not always be necessary to quantify erosion losses - comparison of 

relative treatment ranks may be sufficient. For example, the application of this 

current study could be used to help farmers decide which soil management 

treatment is relatively the most effective at reducing soil loss and runoff on their 

farms. With many farmers joining government run schemes designed to manage 

their farms more environmentally e.g. the Entry Level Stewardship, they have to 

show that the soil management schemes adopted are working. Cheaper, more 

replicable small scale assessments of erosion through aggregate stability or 

rainfall simulations could be used to indicate (but not predict in absolute terms) 
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field scale erosion response through treatment ranks rather than quantification of 

actual losses. 

6.2 Objectives and Hypotheses 

6.2.1 Objectives 

The first objective of this chapter is to assess whether direct extrapolations can be 

made from the micro-plot scale to the field scale in terms of a) actual losses of 

soil and water; and b) runoff coefficients (i.e. the ratio of rainfall received to that 

which runs off as overland flow). 

Second, the study will evaluate whether relative treatment effectiveness remains 

consistent at each spatial scale of investigation, in terms of erosion / erodibility. 

6.2.2 Hypotheses 

6.2.2.1 Hypothesis One 

It is expected that extrapolations from the micro-plot scale to the field scale of a) 

actual soil and water losses per unit area, and b) runoff coefficients are not 

reliable, due to expected differences in erosion processes occurring at each scale. 

The micro-erosion plots used in this study were 1.5m in length and 1m wide 

compared to the erosion plots which were approximately 0.05ha. As stated 

previously the large difference between plot sizes means that different erosion 

processes will be occurring. It is expected that losses of runoff and soil (per unit 

area) and calculated runoff coefficients will be greater from the micro-erosion 

plot in comparison to the field erosion plots and relates to the following. 

a) Erosion processes will differ between spatial scales, with splash erosion 

dominating at the micro-plot scale and overland flow and rill formation at the 

field scale. It would therefore be expected that soil and water losses would be 

greater (per unit area) from the field erosion plots, however, deposition fans are 

more likely to form at the field scale due to fluctuations in slope gradient and 
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micro-topography.  In addition to deposition fans, sediment and runoff reaching 

the collection system as the base of the field erosion plots will be lower than the 

micro-erosion plots due to contour tillage in front of the collection funnels. 

Contouring will not be present on the micro-erosion plots. 

b) There will be differences between scales in the type of rainfall (intensity, 

duration, drop size and kinetic energy). The rainfall intensity used at the micro-

plot scale (35 mm h-1) simulates a 1-6 year storm (NERC 1975). It is predicted 

that this will be a higher intensity than that generated naturally on the field 

erosion plots in the lifetime of the research project. This will result in the rainfall 

on the micro-erosion plots being more erosive. However, an attempt to minimise 

this difference was made by expressing the runoff and soil loss results per unit of 

rainfall received at both spatial scales. 

c) Soil erodibility and risk of erosion will vary due changes in soil properties and 

surface characteristics. Fluctuations in soil and surface properties will occur 

spatially and temporally due to natural variation and tillage induced change. 

Temporal variations in both soil and surface properties will not be represented at 

the micro-plot scale. The field erosion plots measured soil and water loss during 

the majority of the year, from when a crop has been sown until harvest. The 

micro-erosion plots measured soil and water loss at a specific point in time. 

Therefore the results from the micro-erosion plots may be more sensitive to the 

specific soil conditions at that point in time, whereas the erosion plot results 

reflect a variety of soil conditions over a longer period of time. It may be 

possible to relate the time specific results of the micro erosion plots to a 

corresponding  tank clearance from the field plots, so that land management 

conditions (such as crop cover) are comparable. 

d) Actual losses of soil and water would be expected to differ between the two 

spatial scales due to the very different land areas of which they cover. Therefore 

the losses must be standardise from the two spatial scales, so that soil and water 

losses measured are presented as losses per unit area (hectare). 
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In summation, it is expected that differences in soil and water losses between the 

two spatial scales are the result of different processes or factors affecting erosion 

operating, which in turn will vary over time. In theory, some factors or processes 

suggest that erosion would be greater on the field erosion plots, while other 

factors may suggest higher losses from the micro-erosion plots. On balance, it is 

expected that losses (runoff, sediment) and runoff coefficients per unit area will 

be greater from the micro-plot scale compared to the field scale, due to key 

factors or processes. These are: 

I higher rainfall erosivity from artificial rainfall on the micro-plot 

II simulations carried out during periods where risk to soil by water erosion is 

at its highest, specifically before crop establishment   

III less opportunity for infiltration and  storage of runoff, and less opportunity 

for deposition at the micro-plot scale, leading to higher runoff and soil losses 

The expected discrepancies in soil and water losses at the two spatial scales have 

led to the formulation of hypothesis two. 

6.2.2.2 Hypothesis Two 

As previously stated in section 6.2.2 differences in actual soil and water losses 

are expected between spatial scales, due to the presence of different processes 

and factors dominating at each of those scales. However, the relative 

effectiveness of each tillage treatment should be the same. For example, if soil 

loss was greatest from the conventional treatment compared to the SOWAP 

treatment at the field plot scale, it would be expected that this relationship would 

also occur at micro-plot scale. The expected differences between soil 

management treatments can be found in sections 3.4 and 4.4, which suggest that 

runoff and soil losses and runoff coefficients will be greater from the 

conventional treatment compared to both conservation treatments (SOWAP and 

Farmer’s Preference). This is because of the increase in mechanical manipulation 
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of the soil by tillage implements, and decreases in organic matter, surface 

roughness, residue cover and infiltration rates associated with the conventional 

treatment. The relative difference between conventional and the conservation 

treatments is expected to be consistent at both spatial scales; field (≈0.05ha) and 

micro-plot scale (<2m2).  

6.3 Methodology and Analysis 

The results used in this chapter have been obtained from the methods previously 

laid out in chapters 3, 4 and 5. In brief, each chapter comprised of: 

Chapter three: two field erosion plots were installed approximately 0.05 ha for 

each treatment. Runoff and sediment were collected in tanks at the base of each 

plot and were emptied when necessary. The erosion plots were installed after 

crop drilling and were removed just before harvest. During this time the plots 

were subjected to natural rainfall events and monitored for erosion generation. 

Data were obtained for all seasons at both sites; Loddington (1-4) and Tivington 

(1-3). 

Chapter four: rainfall simulations were carried out on micro-erosion plots, 1m 

wide by 1.5m long; three replicates per treatment. Runoff and sediment generated 

from these plots were collected and measured. Micro-erosion plot rainfall 

simulations were carried out biannually in spring and autumn. Each simulation 

was run for around 30 minutes at 35 mm hr-1. Results were measured from all 

seasons for Loddington (1-4) but only during season two and three at Tivington. 

Chapter five: aggregate stability was measured from soil collected from each soil 

management treatment. Samples were obtained biannually adjacent to the micro-

erosion plot experiments. Three replicate soil samples were taken adjacent to 

each micro-erosion plot rainfall simulation trial. Soil aggregates were tested for 

stability by means of three different methods; one rain drop impact method 

(gravity fed rain tower) and two immersion based methods (wet sieving 
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apparatus and a field test kit). Results were obtained from seasons one, two and 

three at Loddington and only season two at Tivington. 

Runoff and soil loss results were standardised for rainfall input and plot size by 

presenting results as losses per unit of rainfall received (mm) per unit area 

(hectares). 

6.4 Results 

To test hypothesis one, results obtained from chapter three and four only will be 

used (field scale compared with micro-plot scale) because the data from chapter 

five (aggregate stability) measured soil erodibility rather than actual soil losses. 

Results were compared for the entire sampling period, and on a seasonal basis at 

each site location. Micro-erosion plot simulations were only carried out in season 

2-3 at Tivington therefore to allow comparison between the two spatial scales 

only data from season 2 and 3 were used from Tivington. At Loddington all 

seasons (1-4) were included. 

To test hypothesis two, the results from all three chapters (3-5) were used but to 

allow comparison, only results from season 1, 2 and 3 were used from 

Loddington and only season 2 from Tivington. These seasons represent the time 

periods within which soil samples were taken for aggregate stability testing. 

Comparisons were made of data over the entire sampling period and on a 

seasonal basis. 

Statistical analysis was not undertaken because of the inherent variability and 

error associated with data collected at each spatial scale. None of the data sets 

were normally distributed and had unequal variance, even after multiple 

transformations were carried out. Non-parametric methods of analysis were also 

tried, including Mann-Whitney U Test and Kruskal-Wallis ANOVA. These tests 

were not used as they were not robust enough to deal with the bias associated 

with extreme events (importance of which was highlighted in section 3.4). Where 
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references are made to statistical differences they are based on statistical analysis 

carried out on data from previous chapters. 

6.4.1 Hypothesis one 

It is expected that runoff and soil losses will be greater per unit area from the 

micro-erosion plots compared to the field erosion plots, as will also be the case 

for runoff coefficients. The results used in this section will be runoff and soil loss 

represented as losses (litres for runoff and grams for soil loss) per unit area 

(hectares) per unit of rainfall received (mm). Runoff coefficients will also be 

compared. Using both actual losses and runoff coefficients allows direct 

comparison between spatial scales. 

The runoff coefficient (RC) represents the ratio between the amount of rainfall 

received and the amount of runoff generated (Hudson 1995). To calculate the 

runoff coefficient Equation 6.1 was used: 

output (volume of runoff (ml) generated from the plot area)

input (volume of rainfall (ml) received over the plot area)
RC =

 
(6.4-1) 

6.4.1.1 Loddington 

The results of runoff, soil loss and calculated runoff coefficients from both the 

micro- and field- erosion plots can be seen in Equation (6.4-1). The results show 

that when data are compared between spatial scales overall (combined results of 

all seasons and for all treatments) the results from the micro-erosion plots are 

always greater per unit area per unit rainfall than those from the erosion field 

plots; this is the case for runoff, soil loss and RC values. This was also the case 

when results were compared between spatial scales for each season. An overview 

table of the results including relative percentages can be found in Appendix K. 
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Figure 6.4-1 Loddington spatial comparison of actual runoff losses. Field erosion 
plots (EP) and micro-plots (MP). Error bars denote standard error. 
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Figure 6.4-2 Loddington spatial comparison of actual soil losses. Field erosion plots 
(EP) and micro-plots (MP). Error bars denote standard error 
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Figure 6.4-3 Loddington spatial comparison of runoff coefficients. Field erosion 
plots (EP) and micro-plots (MP). Error bars denote standard error 

Although no statistical analysis has been carried out it can be seen that there are 

notable differences in variability of results between spatial scales. Also there are 

considerable differences in results obtained at these two spatial scales with higher 

runoff, soil losses and RC values from the small scale (micro-erosion plots) 

compared to the larger field erosion plots. 

6.4.1.2 Tivington 

The mean result for each season of runoff, soil loss and runoff coefficients from 

both the field erosion plots and the micro-erosion plots are presented in the 

Appendix K. The results represent combined data from all treatments. In all cases 

bar one, the results from the field plots are lower than the micro-plots. The 

exception was the soil loss results during season 3 where the opposite occurred. 

The results from each measured parameter were compared between spatial scales 

by calculating the percentage loss or coefficient from the erosion plots relative to 

the micro-plot results. These results are shown in Appendix K. 
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Figure 6.4-4 Tivington spatial scale comparison of actual runoff losses. Field 
erosion plots (EP) and micro-plots (MP). Error bars denote standard error. 
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Figure 6.4-5 Tivington spatial scale comparison of actual soil losses. Field erosion 
plots (EP) and micro-plots (MP). Error bars denote standard error. 
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Figure 6.4-6 Tivington spatial scale comparison of runoff coefficients. Field erosion 
plots (EP) and micro-plots (MP). Error bars denote standard error. 

Again no statistical analysis was undertaken but it can be seen that the variation 

between replicates tends to be greater from the micro-plot results compared to 

that from the erosion plots. Variability within the micro-erosion plot results 

appears smaller at the Tivington site compared to Loddington. This is likely to be 

a function of higher losses from the Tivington site (Nearing et al. 1999). The 

relative difference between micro- and field- erosion plots also appears reduced 
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at Tivington compared to Loddington, although this could be related to a 

reduction in error as previously mentioned. 

6.4.2 Hypothesis two 

It was expected that runoff, soil loss and soil erodibility would be highest from 

conventionally managed soil in comparison to the conservation treatments. It was 

also expected that the ranking of soil erosion/erodibility results between 

treatments would remain constant, irrespective of the spatial scale from which the 

data were generated. 

To allow a more direct comparison between spatial scales in terms of treatment 

ranking, only seasons where data was generated at all scales were initially used. 

The limiting spatial scale was the small scale assessment of aggregate stability; 

these tests were only carried out at Loddington during the first three seasons and 

at Tivington during the second season only.  

The means results over these data sets for all spatial scales from each site 

location can be found in Appendix K. The results show the relative rank of each 

mean for the three treatments, the site location, and the scale from which the data 

were collected and the methods used to obtain these results. Overall it was found 

that the relative ranks of the three treatments differed between spatial scales. It 

was important to investigate if this discrepancy between spatial scales existed on 

a seasonal basis. As stated previously, to allow comparison only season 2 was 

used from Tivington, therefore this site could not be used to show seasonal 

changes in data. In light of this, only seasonal data from Loddington was 

investigated, the results of which are presented in Appendix K. 

To allow an easier comparison, results from the two conservation treatments 

(SOWAP and Farmer’s Preference) were converted to percentages, relative to 

that of the conventional treatment. This was done for each site location and for 

each spatial scale and method employed. These results were plotted for both 

conservation treatments at each site location. The relative results of the 
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conservation treatments to those of the conventional treatment have also been 

presented on a seasonal basis. Again, as stated previously, only data from 

Loddington could be used to highlight seasonal changes (Figure 6.4-9). Overall 

spatial comparisons have been presented in Figure 6.4-7 for Loddington and 

Figure 6.4-8 for Tivington. 
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Figure 6.4-7 Loddington: relative percentage losses of runoff, soil loss and 
aggregate stability in comparison to the conventional treatment. Aggregate 
stability methods are: RT = gravity fed rain tower, WS= wet sieving and FTK = 
field test kit. 
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Figure 6.4-8 Tivington: relative percentage losses of runoff, soil loss and aggregate 
stability in comparison to the conventional treatment. Aggregate stability methods 
are: RT = gravity fed rain tower, WS= wet sieving and FTK = field test kit. 
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Figure 6.4-9 Loddington: relative percentage losses of runoff, soil loss and 
aggregate stability in comparison to the conventional treatment for seasons one to 
three. Aggregate stability methods are: RT = gravity fed rain tower, WS= wet 
sieving and FTK = field test kit  

6.4.3 Additional information 

To gain a better understanding of the soil loss results in particular, the kinetic 

energy for the rainfall received at both the micro- and field- plot scales was 
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calculated. Background and the overall findings of this analysis can be found in 

the Appendix L. 

6.5 Discussion 

6.5.1 Extrapolation between spatial scales in terms of actual losses 

As stated in hypothesis one, it was expected that reliable extrapolation of runoff 

and soil loss from the micro-plot scale to the field scale could not be done. 

Instead it would be possible to use relative treatment differences at small spatial 

scales to indicate field scale differences. The small scales include micro-erosion 

plot generation of runoff and soil loss; and aggregate stability results of 

erodibility.  

The difference between scales was expected to exist because of the different 

erosion processes and factors involved (Imerson & Lavee 1998). For example it 

is expected that at the micro-plot scale erosion would be primarily be controlled 

by rain splash processes, while at the field scale overland flow and rill formation 

would dominate. However, overall losses per unit area, per unit of rainfall 

received were expected to be greatest from the micro-plot scale when compared 

to the field plots.  

It was found the mean runoff volumes and runoff coefficients were higher from 

the micro-erosion plots in comparison to the field plots. This was also the case 

for the mean (all seasons used in analysis) soil loss. The only exception occurred 

at Tivington during season 3. To gain a better understanding as to the processes 

which had occurred during this season, photographs were revisited before and 

after the micro-plot simulation were carried out and then compared to previous 

seasons. Photographs clearly showed the importance of splash erosion at the 

micro-plot scale, with visible deposition of detached particles on the plot 

boundaries. However, this was not apparent in the photographs take during the 

simulations of season 3 (example of splash erosion during season 2 is shown in 
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Plate 6.5-2), implying that during season 3 soil aggregates were less susceptible 

to impact of rain drops. In addition to this, it was also found that bulk density and 

moisture contents were substantially lower during this season. These changes in 

these soil properties would have increased infiltration rate and capacity, reducing 

the amount of water on the surface and thus reducing splash erosion. The 

beneficial effect of depth of water reducing rain drop impact only occurs at a 

critical depth, before this depth is reach, increase of water depth will exacerbate 

rain drop impact (Palmer 1964).   

Apart from the exception at Tivington (which has been explained above) losses 

(calculated per unit area) were substantially greater from the micro-erosion plot 

compared to field plots. It has already been stated that splash erosion was an 

important factor in explaining differences between scales, but this was not the 

only reason. 

One of the previously highlighted factors affecting spatial scales comparison 

(section 6.2.2.1) is the difference between natural and artificial rainfall. The 

simulated rainfall was set to and measured an intensity of 35 mm h-1, 

representing a 1-6 year storm event (NERC 1975). The mean rainfall intensity of 

the natural rainfall received at the field scale was around 3 mm h-1 for both site 

locations. Results out which can be found in Appendix L. The I5 (the maximum 

rainfall intensity received over a 5 minute period) was also calculated for both 

artificial (micro-plot scale) and natural rainfall (field scale). It was found that the 

I5 was not significantly different between artificial and natural rainfall. However, 

it is believed that this does not represent the duration of the storms received at 

each scale. Although the maximum intensity over a 5 minute period was the 

same between scales, at the field scale it was uncommon for rain to fall for more 

than 5 minutes at a time. The micro-erosion plots received rainfall at a high 

intensity (35 mm h-1) for around 30 minutes at a time. This vastly different 

rainfall pattern received at each spatial scale would explain the large differences 

in losses found.  
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Another reason for erosion results being much greater from the micro-plot scale 

was due to an overestimation caused by the difference in collection systems at 

each scale. Whether at the micro or field plot scale, inherent error is associated 

with installing a collection system for sediment and water at the soil interface. 

The collection systems have to be placed partially beneath the soil to minimise 

the effect of undercutting by overland flow as a result of rainfall. At the 

soil/collection system interface, soil stability is expected to be less as aggregates 

are partially fragmented from the main soil body due to disturbance during 

installation. When rain falls, these fragmented particles are more easily eroded 

compared to the undisturbed soil on the plot. Once eroded, particles are easily 

collected directly due to the proximity of the collection system. Although this 

error is associated with both micro and field plots, the ratio of plot area and width 

of the collection system was felt to be important. As the collection width to plot 

area ratio increases a greater proportion of eroded soil would be collected. Also 

the collection system at the field plot scale has undergone a settlement process. 

Even though the metal boundary is removed for each field operation the 

collection system remains in place. Soil adjacent to the collection system 

therefore has time to settle and consolidate over time, unlike the more temporary 

micro plot collection system which is only present for a matter of hours. The 

collection systems at each spatial scale are shown in Plate 6.5-1. 

Plate 6.5-1 Micro-plot (left) width of 1m compared to field plot (right) plot width 9m 
(collection funnel 1.5m) 
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6.5.1.1 The impact of site location on spatial scale comparison 

It appears that relative differences in measured parameters between the micro-

plot and field plot scale are less at Tivington than at Loddington. This was 

unexpected as the risk of splash erosion would have been substantially greater 

due to inherent differences between site location (discussed below). Therefore 

greater runoff and soil loss would have been expected on the micro-erosion plots 

compared to the field plots at Tivington. Interestingly the impact of splash 

erosion was (as expected) less noticeable at Loddington, with most of the erosion 

being caused by overland flow detachment and transport (Table 6.5-1). So there 

must be another reason as to why relative losses between spatial scales were 

smaller at Tivington.  

 

Plate 6.5-2 Splash erosion at Tivington (left) and overland flow at Loddington (right) 
during micro-plot trials 

Firstly at Tivington a higher magnitude of runoff volume and mass of soil lost 

was generated, which helped to reduce the error at the micro-plot scale. 

Secondly, absolute differences in runoff and soil loss could also be attributable to 

inherent soil properties and site characteristics. The Tivington site has a higher 

gradient of 7% compared to Loddington at only 3.5%. The soil at Tivington is 

classed as a sandy clay loam, part of the Worcester series which has been 

identified as having an minimal risk to water erosion, whereas, the Loddington 

soil is a clay, (>44%) part of the Hanslope and Denchworth clay series, and has 

no risk to water erosion mentioned (further detail can be found in chapter 2). 
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Loddington soil has 20% more clay content that of Tivington and 4.4% more 

organic matter, therefore it would be considered that the risk of water erosion at 

the Loddington site would be less.  

Finally, there were site differences in wind velocity.  The effect of wind was a 

great problem during the micro-plot trials at both sites. The mean wind velocities 

were 1.26 m s-1 at Tivington and at Loddington 2.19 m s-1 but the maximum 

velocities recorded were over 9 m s-1 and 6 m s-1 at Loddington and Tivington, 

respectively. A more detailed breakdown of the wind velocities received at both 

sites can be found in the Appendix M. Even gentle breezes can affect rainfall 

distribution in terms of volume and erosivity of rainfall received on a plot 

(Helming 2001). Observations during experimental runs noted considerable 

variation in rainfall received by the micro-plots especially. This may also lead to 

an overestimation of runoff at the micro-plot scale, as simulated rain is also 

blown into the collection systems. Strong winds can lead to a net movement of 

eroded soil particles down slope (Warburton 2005), and into the collection 

systems at the base of the micro and field plots. Wind breaks were used during 

micro-plot trials but did not solve the problem completely.  

It has been shown that the results obtained from rainfall simulations carried out 

on micro-plots cannot be used to predict erosion losses at the field scale – the 

discrepancies between spatial scales are too substantial. The next step was to see 

if the results from the three soil management treatments when ranked could be 

compared across the different spatial scales. The spatial scales used in this 

comparison were field plots and micro-plots where runoff volumes and soil 

losses were measured and small scale assessment of soil erodibility where 

aggregate stability was measured.  
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6.5.2 Spatial scale comparison of relative treatment ranks 

The hypothesis was whether relative treatment ranks or percentages, in terms of 

runoff and soil losses generated from the field plots, can be predicted by the 

micro-erosion plot and aggregate stability results.  

The results varied between site locations and parameters measured (runoff or soil 

loss). Table 6.5-1 shows a summary of these results. At Loddington, neither the 

micro-erosion plot nor aggregate scale results showed the same treatment ranking 

as that found at the field scale for either runoff or soil loss. However, at 

Tivington soil erodibility as measured by use of the gravity fed rain tower did 

result in the same treatment ranking as found at the field scale; this was only in 

terms of runoff. This finding concurs with the work done by Barthés et al. 

(2000), who found positive relationships between aggregate stability and runoff 

volumes. The most number of ticks (showing the same treatment rank as the field 

scale) came from the gravity fed rain tower method to measure aggregate 

stability. This is encouraging, as it reflects the fact that this method of stability 

assessment is able to simulate field erosion processes (i.e. aggregate breakdown 

by raindrop impact). There is concern that the other methods of aggregate 

stability testing which involve total immersion of aggregates (wet sieving and 

field test kit) do not simulate actual erosion processes experienced in the field. 

This data only compared treatment ranks for the entire sampling period, but did 

not take season into account. In order to allow a more direct comparison between 

scales, a breakdown of results by season could not happen at the Tivington site as 

previously discussed previously, therefore seasonal results will only be shown 

from Loddington. As with the results for the entire sampling period, the 

treatment ranks found at each spatial scale were not consistent. The results have 

been summarised in Table 6.5-2 to gain a clearer understanding of which spatial 

scale and method matched the treatment ranks produced from the field scale. 
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Table 6.5-1 Relative treatment ranking of runoff and soil loss from both site 
locations. Ranking order: I – highest to III – lowest values at the field scale.  
represents agreement in treatment ranking for different assessment methods 

Site Factor Treatment Rank Aggregate 

    

Micro-
plot RT WS FTK 

Loddington Runoff Conventional III     

  SOWAP I     

  Farmer’s Preference II     

Loddington Conventional II     

 

Soil 
Loss SOWAP I     

  Farmer’s Preference III     

Tivington Runoff Conventional III     

  SOWAP II     

  Farmer’s Preference I     

Tivington Conventional I     

 

Soil 
Loss SOWAP III     

  Farmer’s Preference II     

The ranked results for runoff generation from the micro-plot scale gave the best 

agreement (most ticks) with the field plots scale, with this being the case for all 

treatments during season three. However, in relation to soil loss, the micro-plot 

scale results did not match a single treatment rank from the field scale. The most 

number of matched results came from the small scale assessment of soil 

erodibility using the gravity fed rain tower method. This included all treatments 

from season three. 

It was found that at both sites the best agreement (i.e. most number of ticks) with 

results from the field plot scale came from the gravity fed rain tower of assessing 

aggregate stability. If this method could be used to indicate field scale response 

of erosion the implications would be a faster, more replicable and cheaper 

method compared to setting up and running of micro-erosion plots in conjunction 

with a rainfall simulator. However, the results are not completely conclusive and 

further work would be necessary. 
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Table 6.5-2 Relative treatment ranking of runoff and soil loss from Loddington 
across three seasons. I – highest to III – lowest values at the field scale.  
represents agreement in treatment ranking for different assessment methods 

Factor Season Treatment Rank Aggregate 

    

Micro-
plot RT WS FTK 

Runoff 1 Conventional III     

 1 SOWAP II     

 1 Farmer’s Preference I     

Runoff 2 Conventional II     

 2 SOWAP I     

 2 Farmer’s Preference III     

Runoff 3 Conventional III     

 3 SOWAP II     

 3 Farmer’s Preference I     

Soil Loss 1 Conventional II     

 1 SOWAP I     

 1 Farmer’s Preference III     

Soil Loss 2 Conventional II     

 2 SOWAP I     

 2 Farmer’s Preference III     

Soil Loss 3 Conventional I     

 3 SOWAP II     

 3 Farmer’s Preference III     

Although ranking has given an indication of the difference or similarities 

between spatial scales it may not be the most effective comparison, as it gave no 

indication of how relatively close the results from the different treatments were. 

To try and resolve this, the relative percentage losses were calculated for the 

conservation treatments (SOWAP and Farmer’s Preference) compared to the 

conventional treatment which had a percentage of one hundred. The results 

showed that even where the treatment ranks where the same between spatial 

scales, the variation in relative results was sometimes high.  
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To solve the problem of data variation, statistical differences based on the results 

from previous chapters, were used to try and compare the data in a statistical 

fashion. Direct statistical comparison between spatial scales was not possible 

because of the nature and inherent variability associated with them. The results 

showed that in the majority of cases no significant differences were found 

between tillage treatments in terms of runoff or soil loss at the field or micro-plot 

scale. Significant treatment differences were found at the aggregate scale when 

immersion base methods were employed but not when the rain drop impact 

method was used. The latter better representing natural rainfall. The lack of 

significant treatment differences at each spatial scale failed to highlight 

interesting and important differences that existed. It is therefore felt that the sole 

use of statistics is insufficient when attempting to make comparisons of erosion 

between tillage treatments across different spatial scales.  

6.5.3 Implications of this study 

The implication of this study is that small scale assessments of erosion and 

erodibility cannot be used to predict field scale erosion losses, but that scale 

comparisons improve on sites which are more susceptible to erosion. There is the 

potential to use small scale assessment of erodibility through use of a rain tower 

to indicate relative effectiveness of different soil management treatments at the 

field scale; but caution should be used. Different erosion processes and factors 

affecting these have been identified at small and larger spatial scales, but further 

research is required to understand the limitations, regarding factors such as crop 

cover and soil surface management. 

6.5.4 Future recommendations 

This study has shown that there is a great deal of variation associated with 

erosion data which makes spatial comparison extremely difficult. Small scale 

assessment of erodibility has the potential to be a powerful tool in assessing field 

scale erosion, as it represents the resistance of soil aggregates to raindrop impact, 
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which is the primary process of erosion. It is well known that soil management 

practices affect soil stability and in turn soil erosion, however, getting that direct 

link has proved difficult. 

This study took aggregates from different management treatments and subjected 

them to erodibility tests. The results were then compared with erosion data 

collected in the field. The results were compared on a seasonal basis and for the 

entire sampling period. This study would have benefited from direct comparisons 

of soil erodibility assessments in the laboratory with erosion results obtained 

from the field scale on an event basis. This was achieved already by comparing 

results from the micro-erosion plots to aggregate stability results. However, the 

agreement between results from the micro-plot scale and the field erosion scale 

was not consistent. Therefore, an inferred relationship between the field scale and 

aggregate stability results could not be made. In addition to the micro-erosion 

plot experiments did not simulate natural rainfall intensities or storm duration. 

More work is needed to understand the why small scale assessments of aggregate 

stability were more efficient at indicating field scale erosion on a lighter, more 

erodible soil (Tivington) than one with a higher clay content (Loddington). The 

study has also highlighted the fact that measurements of runoff, erosion and 

erodibility are affected by the methodology used. This is important to remember 

when reviewing previous research and data concerned with soil erosion. 

It is predicted that better data comparison can be achieved between aggregate 

stability results obtained via rain drop impact methods and field erosion results if 

the starting condition of the test aggregates are dry and not saturated. Further 

work is needed (as already highlighted in chapter 5) of the impact starting 

conditions of test aggregates have on the stability results. 
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6.6 Conclusion 
Mean runoff, soil loss and erodibility associated with 3 different soil 

management treatments have been compared at 3 spatial scales: field erosion 

plots, micro-erosion plots and individual aggregates. The results have been 

expressed in three ways, through treatment ranking, relative percentages to the 

conventional treatment and use of statistical analysis within each scale. The 

results from this study have not been able to give a conclusive answer as to 

whether small scale assessment of erodibility (aggregate scale) or erosion (micro-

plot) can be used to predict the relative ranking of treatment runoff or soil loss 

from the field plot scale. Better agreement is obtained on a seasonal basis, and on 

sites with a higher risk of erosion, but there is still a great deal of uncertainty.  

Small scale assessment of erodibility using a gravity fed rain tower gave similar 

ranking results as obtained from the field scale in more cases than observed for 

the micro-plot scale. This study has been able to conclude that from these results, 

micro-plot scale experiments should not be used to extrapolate actual results of 

runoff volume, soil losses and runoff coefficients to the field plot scale. The 

erosion processes involved at each scale and associated error with the collection 

systems installed at each scale are too great to allow confident extrapolation of 

results. This is an important outcome of this study for many researchers who still 

extrapolate erosion from one scale to another especially through the use of 

erosion prediction models. 
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7 Conclusions and Recommendations 

This chapter puts the present study into the context of current research and 

legislation relating to soil erosion. This chapter addresses two main questions: a) 

how does this present study contribute to soil and water protection research? and 

b) what are the implications and applications of the findings of the current study? 

7.1 Uniqueness of this research 

This study has made a number of original contributions to present day research 

related to losses of soil, water, nutrients and carbon. The infrastructure developed 

to monitor soil and water losses in this project is rarely found in erosion studies. 

Fully instrumented field erosion plots were installed at two localities within the 

UK. Each site was subjected to intensive monitoring programs utilising an 

extensive protocol. Comprehensive instrumentation was installed at each site 

location, measuring a broad spectrum of meteorological and environmental 

parameters, and monitoring depth of runoff and eroded material at each field 

collection system. A unique data set was thus created, encompassing information 

on soil, water, nutrient and carbon lost through erosion, in conjunction with 

supporting field evidence.  

Sites were simultaneously operational, seldom found in erosion research. 

Ordinarily only one geographical location is used (Quinton 2005, Quinton et al. 

2006, Rickson 1994 and Govers & Poesen 1988). The sites were operational for 

over two years, enabling data analysis over four temporal scales - individual 

events, series of events, by cropping seasons and over the entire project duration. 

Such breadth of temporal scales is infrequently found in erosion research. 

The results over these different temporal scales were not just confined to one plot 

size, but simultaneously investigated over three different spatial scales. The use 

of one spatial scale is commonly found, two is more infrequent and three 

exceptionally scarce, especially in non-model, field based research.  This unique 
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study allowed the following question to be asked. Is it possible to extrapolate soil 

and water losses from one spatial scale to another? Results indicate that direct 

extrapolation of actual soil and water losses from micro-erosion plots to the field 

scale is unreliable and prone to error. More success was found when the relative 

(ranked) differences between tested treatments were compared for each spatial 

scale. Although more successful than direct extrapolation, results were still 

inconsistent. The conclusion drawn is that spatial extrapolations of erosion data 

are associated with a substantial degree of error which requires further 

investigation, explanation and understanding. This finding calls into question the 

validity of previous research, much of which has attempted to extrapolate 

between spatial scales, without acknowledging the limitations of this approach. 

Using soil aggregate stability as an indicator of soil erodibility is not a novel 

concept. Previous research has focused on the influence of different experimental 

protocols (e.g. antecedent moisture content, procedures of pre-wetting 

aggregates) on results gained. This present study has directly compared three 

recognised methods of aggregate stability testing (2 based on total aggregate 

immersion and one based on raindrop impact).  

When comparing the  two immersion based methods of aggregate stability (wet 

sieving and a field test kit, designed by Herrick et al. (2001) the present study 

indicates that the field test kit can replace the more laborious laboratory methods, 

when comparing relative (ranking) differences between management treatments. 

The potential benefits of this are extensive, enabling a wide range of people to 

perform aggregate stability tests in the field quickly, with minimal expenditure 

and nominal training. However, it should be noted that both immersion based 

methods are highly destructive, simulating flooded conditions. A distinction must 

therefore be made between results gained from immersion based methods and 

those generated from raindrop impact. The latter represent more closely the 

process of natural rainfall. 
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Thus, the results gained highlight the sensitivity and validity of using different 

assessments of aggregate stability as an accurate indicator of soil erodibility. The 

differences between results for the different methods raise questions as to the 

rigour of previous research. In particular, this study has shown the influence of 

method on results gained - comparison of results from different methods may be 

unsound, and yet this is rarely acknowledged in the literature. 

It emerged from this research that the effectiveness of any soil management 

regime will be site specific. This outcome implies that there are no universal 

panaceas with regard to the use of tillage treatment on mitigating soil and water 

losses, despite the many claims being made to this effect (ECAF 2004). This 

could have significant implications in the formation and application of policy. 

This point shall be expanded upon in section 7.3. 

7.2 Overall observations  

Data generated in the field are associated with a high degree of variability, due to 

the considerable number of variables operating. Examples include natural 

topographic variations and human induced inconsistencies during 

implementation of field operations. Each field erosion plot was approximately 

0.05 of a hectare and duplicated for each treatment. Although stated as the 

minimal number of plots recommended (Morgan 2005), the number of field 

erosion plots per treatment was considered to be a limiting factor in generating 

statistically significant relationships between soil/water losses and site conditions 

(see section 7.4). However, this limitation must be considered in light of the fact 

that this project was part of a larger demonstration project (SOWAP), and it was 

imperative that the plots used were of sufficient size that farmers were convinced 

that the findings were realistic and representative of the field scale. Irrespective 

to these project limitations, some overall conclusions can be made. 
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The effectiveness of conservation soil management in reducing soil and water 

loss was spatially variable. Field scale investigations revealed that the 

conservation tillage regimes were unable conserve water by reducing runoff 

volumes, compared to the conventional tillage treatment. This has implications 

for future flood risk and control policy formation. Conservation tillage, therefore, 

should not be employed as a management practice for flood management and 

alleviation.  

The success of soil management in the reduction of soil loss via water erosion 

was site specific, confirming that stated by Holland (2004). This can be 

explained by the inherent difference in soil erosion risk. There were distinctive 

differences between the two UK sites. The soil from the Tivington site was more 

erodible than at Loddington. This was not surprising due to the fact soil at 

Tivington was a sandy clay loam compared to the heavy clay of Loddington. 

Also soil from Tivington had lower contents of organic matter and the site had a 

relatively higher slope gradient, increasing the risk of erosion.  

It was observed that the presence of surface residues, a rougher soil surface and 

increases in clay content had a more profound effect on sediment generation on 

more erodible soils.  This explained why the adoption of conservation tillage 

(field scale) was only successful in minimising soil loss in comparison to 

conventional tillage at Tivington. The finding that conservation tillage is more 

effective on erodible soils is supported by data from the Belgian sites. Here, 

conservation tillage is highly effective at controlling soil erosion on highly 

erodible loess soils. Interestingly it was found at Loddington, soil loss was on 

some occasions exacerbated by use of conservation tillage. This was attributable 

to uncharacteristic surface conditions on the conventional treatment and a high 

amount of experiment error. The latter relating to very small amounts of 

sediment generated through the study period. It was concluded that further 

research is needed to understand the role of soil texture on the effectiveness of 

conservation tillage. 
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The effect of tillage treatment on losses of soluble and sediment-associated 

nutrients and carbon was highly variable. The effectiveness of conservation 

tillage in reducing nutrient loss was only found on the heavy clay soil of 

Loddington. At Tivington (sandy clay loam), the adoption of conservation tillage 

did not control loss of nutrients. Also at Tivington, conservation soil 

management led to increased losses of organic carbon compared with the 

conventional treatment, but only during small rainfall events. This might be 

linked to the fact that only the small fractions are eroded in such events (Quinton 

et al. 2006), and yet these are the fractions associated with higher adsorption of 

nutrients and carbon. At Loddington carbon losses did not differ significantly 

between tillage treatments. Such variation between site locations meant no 

generic conclusions could be made for the effectiveness of conservation tillage 

on nutrient or carbon losses.  

Important findings from this research were that the adoption of conservation 

tillage as a ‘best management practice’ can reduce soil loss on a sandy clay loam 

soil by the improvement of soil properties and surface conditions. However, 

these benefits might be counterbalanced by an increased risk of carbon and 

nutrient loss. The effectiveness of conservation tillage in comparison to 

conventional practices in controlling soil, water, nutrient and carbon losses is site 

specific, and is affected by changes in soil type, slope gradient and rainfall 

patterns. Therefore, no generic statements as favoured by policy makers can be 

made. Individual site assessments are needed before ‘best management practices’ 

such as conservation soil management can be devised and implemented. 

7.3 Applications of this study’s findings 

The findings of this study have two applications: to existing soil erosion research, 

and to policy formulation on a national and EU level. Each area of application 

will be considered individually. 
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7.3.1 Existing research 

The present study has addressed some of the research gaps as identified in 

chapter 1 in particular – generating and analysing data on the effectiveness of 

conservation soil management practices on losses of soil, water, nutrients and 

carbon.  

Data obtained during this study, represent losses from typical arable systems 

under a UK temperate climate.  This unique dataset could form the baseline for 

future assessments of changes in soil and environmental conditions as a result of 

changes in land management, land use and (of particular relevance today) climate 

change. The latter is an important and ever increasing research topic (EA 2004b). 

This extensive dataset could be important for future model building and 

validation, encompassing two UK locations consisting of different soil types, 

topography and rainfall regimes. 

Extensive research has been undertaken on the effect of soil properties and 

surface characteristics on soil erosion, however, changes in these factors as a 

result of different tillage regimes are less common. The findings of this present 

study can contribute to a number of on-going debates within the discipline of soil 

erosion.  

Published, peer-reviewed literature indicates the presence of organic matter and 

carbon within the soil reduces soil erosion, due to improvements in soil structure 

and aggregate stability (King et al. 2005, Robinson & Phillips 2001; Le 

Bissonnais et al. 2002). Soil with a higher organic matter and carbon content is 

therefore expected to reduce the propensity to erosion. Observed results from this 

study confirm this relationship. The Tivington site with a measured baseline 

organic matter content of 0.84% generated substantially higher volumes and 

mass of runoff and sediment in comparison to the Loddington site at 5.2%. At 

both sites, the adoption of conservation tillage led to an expected accumulation of 

organic matter and carbon, due to the lack of soil disturbance by inversion tillage 
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and higher levels of biological material in the form of surface residues and/or 

cover crop. However, these increases in organic matter / carbon did not always 

result in reductions in runoff or soil loss. This was due to the influence from 

other soil properties and surface characteristics present at the time. This 

illustrates the complexity of interactions between factors affecting the processes 

of runoff generation and soil erosion. 

There is evidence in the literature showing that the long-term use of conservation 

tillage under some circumstances may actually enhance runoff generation 

(Holland 2004). This may be caused by a lower level of soil disturbance in the 

plough layer (relative to conventional tillage) leading to soil consolidation over 

time. As a result bulk density is increased and infiltration reduced, causing higher 

runoff generation. In this research where significant differences in bulk density 

exist (Loddington), it is the conventional treatment which shows higher bulk 

density compared to at least one of the conservation treatments. Therefore, the 

results from this research contradict the general assumption that the adoption of 

conservation tillage increases bulk density over time as shown in work by 

Cavalaris & Gemtos (2002). This might be related to the limited duration of the 

current study. Observations of increased bulk density under conservation tillage 

tend to occur after 5 years. This illustrates the need for longer term monitoring of 

different soil management practices to quantify the true benefits or limitations of 

different treatments. 

At both site locations surface characteristics were found to be influential in the 

generation of soil and water losses. These were reduced by the presence of 

surface cover, and increased undulation of the microtopography associated with 

surface residues and tillage induced roughness. The influence of surface 

roughness was expected to reduce over time, as a result of consolidation from 

rainfall impact, and this was supported by the observed data (especially at 

Tivington). However, the effect of the reduction in surface roughness in 

minimising soil and water generation could not be isolated from other soil and 
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surface properties. The presence of a surface cover in the protection of soil 

against erosion have been studied or expressed by numerous researches (Morgan 

2005; Mandal et al. 2005; Hudson 1995; Robinson & Phillips 2001; Fullen & 

Catt 2004; Wischmeier & Smith 1978). Observations from this current research 

generally support this relationship, being of particular importance during periods 

of heavier rainfall.  

7.3.2 Policy  

Currently there is active EU legislation in place giving farmers incentives to 

follow ‘best management practices’, as initiated under programmes such as the 

reformed Common Agricultural Policy or CAP. Recently, agricultural policy has 

moved away from issues of production and markets, towards incentive-based 

legislation which requires the integration of wider environmental benefits to 

existing farming practices. Advantages include a reduction of soil and water loss, 

minimising nutrient and carbon losses and the improvement of local biodiversity. 

The adoption of conservation based soil management practices is currently being 

advocated as appropriate farming methods to achieve this goal (DEFRA 2005; 

ECAF 2004) 

The observed results from this current study indicate that the application of 

conservation soil practices is not always associated with environmental benefits. 

EA (2004b) identified that policy on the importance of soil on carbon dynamics 

(sinks and sources) must be strengthened. The observed results indicate that the 

adoption of conservation soil management on sandy clay loams with low organic 

matter content, may be detrimental to the capacity of soils to retain carbon, 

releasing it in runoff and eroded sediment. As previously stated conservation soil 

management did not reduce runoff generation, and in some cases increased soil 

loss. Despite this the adoption of conservation tillage resulted in the increase in 

organic matter and carbon content, a reduction in bulk density and maintenance 

of soil moisture. These improvements are beneficial in terms of soil erodibility. 

Also, as a result of the changes in soil properties, the soil ‘health’ is improved 
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affecting the soil biota (Allton 2006). In this sense, this study suggests that the 

goal of improving local biodiversity with conservation tillage can be achieved. 

This is explicitly mentioned in the EU Habitats Directive (EUROPA 2006d).  

7.4 Research limitations 

A high degree of variation was observed for the field erosion plots due to natural 

system variability. Two plots per treatment were perhaps insufficient to 

overcome error associated with random features including natural changes in soil 

and underlying geology, drainage pathways, gradient fluctuations, patchy crop 

growth, animal damage and human induced features such as tramlines and 

turning marks. However, an increase in plot replication would have led to a 

decrease in plot area, which would be unrepresentative of the field scale. 

Quantification of soil erodibility via aggregate stability tests was found to be 

challenging. Aggregates are highly sensitive to outside destructive forces and 

begin to breakdown from their natural state during removal from the soil 

environment, transportation and preparation before testing. Despite these 

inevitable concerns, comparisons were still possible, as it can be argued that such 

variability is consistent for all treatment. To allow comparison between aggregate 

stability methods, aggregates had the same starting conditions. Due to time 

constraints, a well used, saturation method of fast wetting was employed. 

Unfortunately this method was highly destructive and caused partial breakdown 

of aggregates before stability tests could be carried out. Therefore realistic 

representation of field conditions may not be possible and was thought to be the 

reason why expected treatment differences did not occur when aggregates were 

tested using the gravity fed rain tower.  

Also, assessing soil erodibility by using individual aggregates of a specific size 

has been stated as being unrepresentative of the whole soil (Six et al. 2000). 

Tests on whole soil samples, and aggregates of different ranges of sizes showed 
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that aggregate size did not significantly affect stability results. This relationship 

is seldom acknowledged in research relating to aggregate stability. 

7.5 Recommendations 

Soil erosion and erodibility measurements should be measured on an event basis 

rather than over a series of events i.e. a cropping season. The latter is too coarse a 

temporal resolution, so that variations within a season cannot be isolated and 

explained. At the field scale, an improvement in data collection of rainfall 

erosivity is required to allow better comparison with smaller spatial scales. 

Erosion data collection following a rainfall event from the field scale should be 

repeated soon afterwards at the micro-plot scale with a rainfall simulation using 

the same rainfall intensities and duration as the natural event. In conjunction with 

this, soil samples adjacent to the micro-plots should be taken for aggregate 

stability testing at the same time. Aggregates should be tested using raindrop 

impact methods using the same rainfall intensity and duration as that found at the 

field and micro-plot scale. A better comparison of field scale erosion can be 

made by covering the micro-plot test area during the field scale rainfall event. By 

covering the plot it ensures that the antecedent soil conditions between spatial 

scales are similar, i.e. moisture content and surface conditions (sealing, aggregate 

breakdown and presence of erosion features); allowing more robust spatial scale 

data comparison. 

Nutrients and carbon losses should also be measured on an event basis and in 

addition to field studies, losses should also be carried out at the micro-plot scale. 

Surface soil samples should also be taken just before and after rainfall to assess 

in field changes in nutrient and carbon content. Surface residues have been 

shown to minimise soil erosion, however they have also been associated with 

increases in nutrient loss. The application of surface residues is an integral part of 

conservation soil management. More work is therefore needed on the effect of 

surface residues on nutrient and carbon loss. This research should also be 
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performed at multiple spatial scales. This should also be repeated with 

differences in soil type as a result of the inconsistencies observed between site 

locations. 

During this study the effect of treatment on subsurface flow (through-flow) and 

infiltration capacity and rates was not investigated. These are very important 

hydrological processes, which must be considered to gain a full understanding of 

tillage effects on soil, water, nutrient and carbon loss. It has been reported that 

nutrient and carbon losses in sub-surface flow can be significant (Zhao et al. 

2001). 

The way in which aggregates were prewetted was an important influence in the 

results gained, due to the destructive nature of the method. Therefore, different 

starting conditions should be tested. Whilst this is not novel research, comparison 

of results gained from different levels of pre-wetting with results of erosion from 

other spatial scales is original. It is expected that the use of different starting 

conditions would result in treatment differences occurring when using the 

raindrop impact method of aggregate stability, due to the fact that the effect of 

fast wetting causes slaking, and therefore aggregate breakdown before the 

aggregate stability tests are carried out. The relative effect from rain drop impact 

after slaking is thought to be minimal, simulating the effect of natural rainfall on 

soil under flooded conditions. By using different starting conditions, i.e. field 

capacity or air dry, the effect of tillage treatment on soil aggregates under 

different field conditions can be simulated. It is expected that as a result better 

comparison between spatial scales would be possible. 

As stated previously, Six et al. (2000) expressed concern over the study of 

individual aggregates of a specified size to represent soil erodibility rather than 

tests on whole soil samples. Although work was carried out to address this 

concern, tests were carried out on aggregates from a whole soil rather than a soil 

sample in its entirety i.e. an undisturbed sample. Therefore, comparative tests 

should be carried out between aggregate stability methods on individual 
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aggregates with splash cups using undisturbed soil samples. Samples for both 

should be tested using rain drop impact rather than immersion based methods to 

represent field conditions better. 

It is known that the soil microbiological community are intrinsically linked to 

aggregate stability. Different microbial organisms inhabit specific niches 

determined in part, by pore and aggregate size (Killam 1994).  It would be 

expected therefore, that the microbial community would differ with changes in 

aggregate size, and erodibility would also vary as a result. The observed results 

from this present study showed no significant differences in erodibility with 

changes in aggregate size. The use of aggregate stability in the assessment of 

erodibility will continue to be well used in erosion research. Therefore, more 

research is essential on the influence of soil management on the soil microbial 

community, and thus on the soil susceptibility to erosion. 

All of the above should lead to a better understanding of the discrepancies 

observed between spatial scales. If field scale losses of soil, water, nutrient and 

carbon could be predicted, even on a relative basis, from small scale 

investigations the benefits would be vast. This is especially true at a time when 

policy makers and land managers are seeking effective ways to protect the 

environment whilst maintaining food, fibre and fuel security. This study has 

contributed to this debate, not least in demonstrating why conservation tillage is 

not a universal panacea to mitigate soil, water, nutrient and carbon losses. 

7.6 Summary of Conclusions 

The effectiveness of using tillage treatments in the mitigation of runoff 

generation and soil loss was found to be site specific. Results of runoff loss did 

not substantially differ between site locations; the opposite was true of soil loss. 

At Tivington, soil was found to be more erodible than at Loddington, primarily 

as a result of increased clay and organic matter content, and a gentler slope. It 

was noted that field data was associated with a high degree of variability due to 
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natural topographic variation, limited replication and human error during field 

operations. Variability at the field scale was expected, two other spatial scales 

were therefore investigated. Results indicated that aggregate stability tests 

(<5mm) may be more reliable in assessing treatment effect on soil erodibility 

than field rainfall simulators trials (1.5m2). It should be noted that the choice of 

method was crucial in the determination of aggregate stability and therefore 

treatment effects. 

In summation, treatment effect on soil erodibility was site specific and dependant 

on the spatial scale being investigated. Caution should be used when using 

smaller scale assessment of soil erodibility to indicate field scale erosion as 

extrapolation from one scale to another can be fraught with error; an important 

consideration to modellers. The results suggest that there can be no universal 

method to mitigate against soil and water loss. Management should be tailored to 

be site specific and that this concept should be integrated into future policy. 
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Appendix A Erosion plot funnel layout (based on a drawing 
from Ceri Llewellyn, NSRI) 

2000mm

2000mm

150mm

1160mm

1160mm

160mm

180mm

50mm

690mm

250mm

Lid

Mouth

Funnel

2000mm

2000mm

150mm

1160mm

1160mm

160mm

180mm

50mm

690mm

250mm

Lid

Mouth

Funnel

Top View

 

250mm

150mm

690mm

250mm

50mm

730mm

250mm

150mm

690mm

250mm

50mm

730mm

Side View

 



  

- 283 - 

Appendix B Methods of runoff, sediment and soil analysis 

A variety of analyses were carried out on runoff, sediment and soil, Table G.1 

gives an overview of these methods. 

Table B.1 Methods of runoff, sediment and soil analysis 

Determinand Method 

Runoff  
Soluble nitrate & Soluble phosphorus Atomic absorption spectrometry 

Soluble potassium Corning 4000 flame photometer 

*Total dissolved organic carbon High temperature combustion and Non-Dispersive 
Infared (NDIR) detection 

*Total suspended sediment Oven dry evaporation of an aliquot sample 

Soil & Sediment  

Bulk density Density rings  

Soil moisture content  Gravimetric and volumetric 

*Particle size distribution Pipette sedimentation method 

*Organic matter content Wet oxidation / Walkley Black 

*Total nitrogen Dumas  

Total carbon Vario EL determination (acid digest 

*Total Potassium & Total phosphorus Acid digestion and determination through  
Inductively Coupled Plasma Emission 
Spectroscopy (ICP-OES).  

*indicate methods performed by Natural Resource Management Ltd, Bracknell, 
UK 
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Appendix C Drop size calibration of field rainfall simulator (adapted from Simmons 1998)  
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Appendix D Field rainfall simulator – RI calibration 

The field rainfall simulator was calibrated by carrying out successive runs at 0.39 

bar which had previously been tested at generating a rainfall intensity of 

approximately 35 mm hr-1. The plot area used for calibration was 1.5m-2 within 

which 15 catch cup were evenly spaced (3 across by 5 down). These were 

numbered 1 to 15. The simulator was run for approximately 30 minutes, after 

which the water retained in each catch cup is measured and the rainfall intensity, 

RI, is calculated using Equation D.1. Mean rainfall intensity was calculated at 

34.9 mm hr-1, descriptive statistics of these data are presented in Table D.2. 

 
 
 
Where: 

1060
2 ×⎟

⎠
⎞

⎜
⎝
⎛×⎟

⎠
⎞

⎜
⎝
⎛=

tr
RRI
π      (D.1)

R, is the amount of rainfall received (ml) 
r, is the catch cup radius (cm) 
t, is the simulation running time (min) 
  Table D.1 Calculated rainfall intensity of each simulation run 

cup # 1 2 3 4 5 6 7 8 9 10 11 
1 11.54 53.36 46.99 43.04 24.45 12.23 29.05 13.43 59.47 62.98 28.78
2 26.66 22.03 38.67 36.19 24.45 8.31 32.20 16.63 86.33 86.67 33.25
3 17.86 5.38 16.15 48.42 54.77 4.40 46.09 27.50 99.12 87.92 50.52
4 7.97 59.23 44.55 42.06 15.16 13.20 30.31 15.35 60.75 57.99 24.30
5 9.07 49.44 26.43 22.98 16.63 31.30 31.57 15.99 67.15 68.59 26.86
6 14.57 18.11 30.84 43.52 37.66 8.80 46.73 22.38 131.10 99.14 41.57
7 6.05 36.71 39.65 26.41 14.18 7.82 31.57 15.99 57.56 56.12 23.66
8 7.97 30.35 16.15 20.05 15.65 8.80 32.20 16.63 57.56 58.61 24.30
9 12.37 40.14 23.01 38.63 26.90 7.82 44.20 20.46 99.12 74.82 35.17
10 6.60 40.14 25.94 30.81 15.16 10.76 41.04 21.10 54.36 52.38 27.50
11 8.52 67.55 15.66 22.01 16.14 8.31 35.36 20.46 57.56 56.74 27.50
12 13.74 70.49 27.90 36.19 33.25 5.87 46.73 23.66 76.74 63.60 35.17
13 12.92 21.05 35.25 55.75 29.34 15.65 54.30 30.70 47.96 49.26 27.50
14 9.89 28.39 43.57 40.59 30.81 11.25 46.73 25.58 57.56 56.12 26.22
15 16.49 30.84 32.31 39.12 28.36 7.34 54.93 31.34 63.95 54.87 35.17

mean 12.15 38.22 30.87 36.38 25.53 10.79 40.20 21.15 71.75 65.72 31.17

Table D.2 Descriptive statistics of rainfall intensity 

 N Mean Std.Dev. Std.Err -95.00% 95.00% 
Total 11 34.90 19.38 5.84 21.88 47.92 
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Appendix E Seal and pond formation on the micro-erosion 
plots 
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0

20

40

60

80

100

0:00 0:10 0:20 0:30 0:40 0:50 1:00
0

10

20

30

40

0:00 0:10 0:20 0:30 0:40 0:50 1:00

0

20

40

60

80

100

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35

Se
al

 F
or

m
at

io
n 

(%
 c

ov
er

)

Time (min) Time (min)

Time (min)

Conventional

SOWAP

Farmer’s Preference

Treatments:

trial 3

trial 1 trial 2

0

5

10

15

20

0:00 0:10 0:20 0:30 0:40 0:50 1:00

0

1

2

3

4

5

6

0:00 0:10 0:20 0:30 0:40 0:50 1:00

0

5

10

15

20

25

0:00 0:05 0:10 0:15 0:20 0:25 0:30 0:35

Po
nd

 F
or

m
at

io
n 

(%
 c

ov
er

)

Time (min) Time (min)

Time (min)

Conventional

SOWAP

Farmer’s Preference

Treatments:

trial 3

trial 1 trial 2

 



  

- 287 - 

Tivington results 
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Appendix F Aggregate stability and size relationship 

This section was to assess if a relationship existed between soil aggregate size 

and stability. It was expected that a relationship would exist based on work by 

Hjulström (1935) and Poesen (1992).  It is predicted that there will be a positive 

relationship between aggregate size and stability, using aggregates sized between 

0.5 and 9mm. This is based on Hjulstrom’s curve which shows the energy 

requirements to detach, transport and deposit soil particles in water (Hjulström 

1935). If a relationship does exist between aggregate size and stability, this 

would have implications on the 3.35 – 5mm aggregate size used for stability 

tests. To test this aggregates were tested for stability under the gravity fed rain 

tower as layout in chapter 5. 

At Loddington there were no significant treatment differences in relation to 

aggregate size and stability. The outputs have been presented in Figure F.1 and 

Figure F.2. Again there is no significant difference between different aggregate 

sizes and the percentage stable aggregates present. There is however a positive 

trend. As aggregate size increases so does the stability of aggregates, except 

using aggregates sized 3.35-5mm. 

Data from Tivington showed no significant differences in aggregate size and 

percentage stable aggregates in relation to treatment. The outputs have been 

presented in Figure F.3 and Figure F.4. There was no significant effect of 

aggregate size on the stability of aggregates. There is a trend towards their being 

a negative relationship between aggregate size and percentage stable aggregates. 
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Figure F.1 Loddington: relationship between aggregate size and stability, n = 47 
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Figure F.2 Loddington: relationship between aggregate size and stability in 
relation to different tillage treatments. C=conventional, S=SOWAP and 
F=Farmer’s Preference, n = 47 
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Figure F.3 Tivington: relationship between aggregate size and stability, n = 48 
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Figure F.4 Tivington: relationship between aggregate size and stability in relation 
to different tillage treatments. C=conventional, S=SOWAP and F=Farmer’s 
Preference, n =48 
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It was expected that a positive relationship would exist between aggregate size 

and stability. Statistically this was not the case at either site, but at Loddington 

there was a positive trend with aggregate stability increasing from aggregate 

sizes 0.5 to 9mm. There was a reduction in stability for aggregate sizes 3.35-

5mm. At Tivington there was no visible trend / relationship between aggregate 

size and stability.  Therefore using this current data set the hypothesis cannot be 

supported.  

The lack of relationship was not a function of treatment but could be related to 

the method used to obtain the results. In order to test the hypothesis linking 

aggregate size to stability, aggregates were only tested under the rain tower. The 

results from hypothesis two show that the wet sieving - immersion based method 

is more destructive, producing lower percentages of stable aggregates compared 

to those from the rain impact method (rain tower). The wet sieving method could 

not have been used as it does not allow testing of aggregates down to a size of 

0.5mm. The smallest size that could have been tested using this method would 

have been 2mm. The results from the rain impact method will only pick up very 

large differences and trends.  
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Appendix G Laboratory rain tower – rainfall intensity 
calibration 

The laboratory rain tower was calibrated for rainfall intensity by carrying out 

successive runs with 75 needles open and a weir of 16mm. Numerous 

combinations of needles open and weir depth were tried before the current set up 

was kept (Figure G.1).The rainfall target area was 0.5m-1 under which catch cups 

of a known diameter were placed uniformly.  

 Figure G.1 Needle tray layout, plan view. Dots denotes open needles 

The rainfall simulations were run for 17 minutes, after which the water retained 

in each catch cup was measured and the rainfall intensity, RI, is calculated using 

Equation G.1. Where R, is the amount of rainfall received (ml), r, is the catch cup 

radius (cm) and t, is the simulation running time (min). The mean rainfall 

intensity after 19 simulations was calculated at 35.48 mm hr-1, descriptive 

statistics of this data are presented in Table G.1 and Table G.2.  
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R, is the amount of rainfall received (ml) 
r, is the catch cup radius (cm) 
t, is the simulation running time (min) 
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Table G.1 Descriptive statistics of rainfall intensity 

  N Mean Std.Dev. Std.Err -95.00% 95.00% 

Total 19 35.48245 2.271077 0.521021 34.38782 36.57707 

Table G.2 Calculated rainfall intensity of each simulation run 

cup # 1 2 3 4 5 6 7 8 9 
1 39.44 36.68 34.85 33.93 33.02 32.10 29.81 29.81 33.93 
2 39.44 38.06 36.68 36.23 34.85 32.56 33.02 32.10 36.68 
3 38.52 35.77 35.77 33.93 36.68 32.56 32.10 33.02 36.68 
4 34.85 32.10 32.10 31.18 34.39 31.18 30.26 30.72 33.93 
5 31.18 27.05 28.43 27.51 30.72 27.05 27.05 27.51 28.43 
6 40.35 36.68 35.31 36.68 36.23 32.10 30.72 30.26 32.56 
7 43.10 38.98 38.52 39.44 39.44 36.23 34.85 33.93 40.35 
8 41.27 38.52 38.52 40.35 39.89 37.14 36.68 35.31 40.35 
9 38.52 33.93 36.23 37.14 37.14 33.93 34.39 33.02 37.60 
10 33.02 28.89 31.18 31.18 33.02 29.35 30.26 31.64 33.02 
11 42.19 38.06 36.23 37.60 35.77 32.10 32.10 31.18 38.52 
12 43.56 39.44 38.06 40.35 39.44 36.23 35.77 34.85 41.27 
13 42.65 38.52 38.52 40.35 40.35 35.77 36.68 36.68 40.35 
14 40.35 34.85 36.68 38.52 38.52 35.77 36.23 35.31 39.44 
15 36.23 30.26 32.10 32.10 33.93 31.18 31.18 30.72 33.47 
16 43.10 38.52 36.68 37.60 34.85 32.10 32.10 31.18 38.52 
17 44.02 40.35 39.44 40.35 38.98 36.23 34.85 35.77 42.19 
18 44.02 38.52 39.44 40.35 40.35 36.68 37.14 37.14 41.27 
19 41.27 34.85 36.68 38.52 39.44 35.77 36.68 35.77 38.52 
20 36.68 30.26 32.10 32.10 34.85 31.18 32.10 30.26 33.02 
21 43.10 38.52 36.68 36.68 33.93 33.02 30.72 34.85 38.52 
22 44.94 40.35 39.44 40.35 38.06 36.23 34.85 36.23 41.27 
23 44.94 39.44 39.44 40.35 40.81 36.23 36.68 34.85 41.27 
24 41.27 35.77 36.68 38.52 39.44 34.85 35.31  38.52 
25 36.68 30.26 32.10 35.31 33.93 30.26 31.18 29.35 33.02 
26 41.27 38.52 37.60 33.02 33.02 31.18 30.26 29.35 38.52 
27 44.94 39.44 39.44 39.44 37.60 34.85 33.02 33.93 41.27 
28 44.02 38.52 39.44 39.44 38.98 34.85 35.31 34.85 40.35 
29 42.19 36.23 36.68 36.68 37.14 32.56 34.85 33.93 38.52 
30 36.23 29.81 31.18 30.72 32.56 28.43 28.89 29.35 31.64 

mean 40.44 35.90 36.07 36.53 36.58 33.32 33.17 32.86 37.43 

 

cup # 11 12 13 14 15 16 17 18 19 
1 28.43 33.02 35.77 36.68 34.85 34.85 32.10 31.18 34.65 
2 30.26 36.68 38.52 38.52 35.77 37.14 34.85 33.93 36.96 
3 30.72 34.85 36.68 37.60 34.85 35.77 33.93 32.10 36.19 
4 31.18 33.02 33.93 33.93 32.56 32.10 29.35 29.81 32.34 
5 30.26 27.51 28.43 27.51 27.51 26.60 23.84 24.76 26.18 
6 30.26 37.60 38.52 39.44 36.68 37.14 34.85 33.93 37.73 
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7 33.02 39.44 41.73 42.19 39.44 41.27 37.60 36.68 40.04 
8 33.93 39.44 40.35 41.27 39.44 39.44 36.68 36.68 40.04 
9 33.02 35.77 36.23 36.68 35.77 34.85 33.02 32.10 36.19 
10 30.72 29.35 31.18 30.72 29.35 28.43 26.60 25.68 30.03 
11 30.26 37.60 39.44 39.44 37.60 37.60 35.77 33.93 39.27 
12 33.02 39.44 43.10 41.73 41.27 40.35 37.60 35.77 40.81 
13 34.85 38.98 42.65 42.19 41.27 40.35 36.23 36.68 40.04 
14 33.02 35.77 38.98 38.52 37.60 36.68 33.02 33.02 37.34 
15 30.72 30.26 33.93 32.10 31.18 30.26 27.51 27.51 32.34 
16 30.72 37.60 39.89 38.52 38.52 37.14 36.68 34.85 39.27 
17 33.02 39.44 41.27 42.65 41.27 40.35 38.52 36.68 42.35 
18 33.93 38.52 41.73 42.19 40.81 40.35 36.68 35.77 41.96 
19 33.93 35.77 41.27 38.52 37.60 36.68 33.47 33.02 37.73 
20 31.18 30.26 33.47 33.02 32.10 30.72 27.51 28.89 32.34 
21 31.18 36.68 39.44 39.89 36.68 37.60 35.77 33.93 38.50 
22 33.93 39.44 42.19 43.10 40.35 40.35 37.60 35.77 41.58 
23 34.39 39.89 41.27 42.19 40.35 39.44 36.68 35.77 41.58 
24 33.93 35.77 38.06 38.52 38.52 35.77 33.02 33.02 36.96 
25 30.26 30.26 32.56 32.10 32.10 35.77 27.51 27.51 32.34 
26 30.72 35.77 38.52 37.60 35.77 30.26 33.93 32.10 37.73 
27 33.93 37.60 40.81 39.44 39.44 38.52 35.77 33.93 40.04 
28 34.39 38.06 40.35 39.89 39.44 37.60 35.77 33.93 39.27 
29 32.56 34.85 36.68 36.68 36.68 33.93 32.10 31.18 36.57 
30 28.89 28.43 30.72 30.72 32.10 28.43 26.60 26.60 30.41 

mean 32.02 35.57 37.92 37.78 36.56 35.86 33.35 32.56 36.96 
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Appendix H Drop size calibration of laboratory rain tower, (adapted from Simmons 1998)  
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Appendix I Relationship between soil properties and soil 
aggregates 

Loddington season 1 to 3 
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Error bars denote confidence intervals at 95% confidence; n = 99 (organic 

carbon); 72 (organic matter); 18 (clay content); and 54 (bulk density). 
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Tivington season 2  
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Appendix J Aggregate stability: whole soil versus 3.35-5mm 

This section was to assess if there was a significant difference in stability when 

aggregates were tested using sizes 3.35-5mm against a whole soil sample. This 

study was carried to address the concern of whether aggregates of a specified size 

reflect the stability of a whole soil sample (Six et al. 2000). This had been 

discussed in chapter 5; in this section only the graphical outputs will be 

presented. 
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Figure J.1 Loddington: aggregate stability at different sieve sizes, n=36 
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Figure J.2 Tivington: aggregate stability at different sieve sizes, n = 36 
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Figure J.3 Loddington (left) and Tivington (right): 3 sets of graphs to show the 
relationship between aggregates sized 3.35-5mm and a whole soil sample in terms of 
aggregate stability, n = 36 
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Appendix K Spatial scale comparisons 

Table K.1 Loddington: comparison of mean results of runoff, soil loss and runoff coefficients (RC) between two spatial scales; field 
erosion plots (EP) and micro-plots (MP). S = season O = overall 

Runoff 
(l ha-1 mm-1) 

Soil Loss 
(g ha-1 mm-1) 

C value Time  

EP MP % EP MP % EP MP % 
O mean 52.5 737.4 8.0 33.8 420.7 7.1 0.0034 0.042 8.0 
 S.E. 737.4 315.4  8.7 105.8  0.0009 0.011  

S1 mean 12.3 81.6 15.1 19.5 209.3 9.3 0.0012 0.008 15.1 
 S.E. 1.6 27.0  3.8 66.1  0.0002 0.003  

S2 mean 61.4 966.8 6.4 127.3 1179.5 10.8 0.0061 0.097 6.4 
 S.E. 21.4 65.2  60.1 250.0  0.0021 0.007  

S3 mean 5.2 254.1 2.1 0.0 1429.8 0.0 0.0005 0.025 2.1 
 S.E. 1.5 130.2  0.0 1305.0  0.0002 0.013  

S4 mean 25.7 287.4 8.9 10.5 258.3 4.1 0.0026 0.029 8.9 
 S.E. 7.2 193.5  4.5 174.2  0.0007 0.019  

Table K.2 Tivington: comparison of mean results of runoff, soil loss and runoff coefficients (RC) between two spatial scales; field 
erosion plots (EP) and micro-plots (MP). S = season O = overall 

Runoff 
(l ha-1 mm-1) 

Soil Loss 
(g ha-1 mm-1) 

C value Time  

EP MP % EP MP % EP MP % 
O mean 313.7 1042.1 30.1 3072.8 5479.8 56.1 0.031 0.104 30.1 
 S.E. 46.3 155.7  889.4 1277.1  0.005 0.016  
S2 mean 231.7 1429.4 16.2 1026.8 9297.2 11.0 0.023 0.143 16.2 
 S.E. 41.6 233.1  288.4 2172.8  0.004 0.023  
S3 mean 386.5 654.8 59.0 4891.5 1662.3 294.3 0.039 0.065 59.0 
 S.E. 78.3 166.7  1627.6 529.8  0.008 0.017  
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Table K.3 Direct comparison of mean results and treatment ranks of treatments at each spatial scale 

Conventional SOWAP Farmer p Site Scale /  

Method 

Units Parameter 

mean rank mean rank mean rank  

L f EP l ha-1 runoff  1508 III 1890 I 1541 II NS 

L m RS l m-2 mm-1 runoff 0.05 II 0.04 III 0.07 I NS 

L f EP g ha-1 sediment 1210 II 3268 I 1031 III NS 

L m RS g m-2 mm-1 sediment 0.03 II 0.02 III 0.08 I NS 

L a RT % stable soil 88.3 I 89.4 II 90.8 III NS 

L a WS % stable soil 44.7 I 54.3 II 67.3 III *** 

L a FTK % stable soil 38.7 I 52.5 II 60.5 III *** 

T f EP l ha-1 runoff  11289 III 11965 II 18187 I NS 

T m RS l m-2 mm-1 runoff 0.20 I 0.13 II 0.11 III NS 

T f EP g ha-1 sediment 62521 I 25168 III 39237 II NS 

T m RS g m-2 mm-1 sediment 1.08 I 1.04 II 0.67 III NS 

T a RT % stable soil 87.4 III 86.8 II 84.5 I NS 

T a WS % stable soil 30.2 II 37.2 III 20.1 I ** 

T a FTK % stable soil 37.3 II 44.2 III 27.5 I *** 

Site locations: Loddington (L) and Tivington (T). Spatial scales: field level ≈0.05ha (f), micro-plots 1.5m2 (m), aggregate scale mm 
(a). Methods used: erosion plots (EP), rainfall simulations (RS), rain tower (RT), wet sieving (WS) and field test kit (FTK). NS = 
not significant; * = p<0.05; ** = p<0.01; *** = p<0.001. Ranking order: most erodible or highest erosion (I) to least erodible or 
lowest erosion (III). 
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Table K.4 Tivington: direct comparison of mean result and treatment ranks of treatments at each spatial scale across three seasons  

Conventional SOWAP Farmer p S Scale /  

Method

Units Parameter 

mean rank mean rank mean rank  

1 f EP l ha-1 runoff  1496 III 1933 II 1953 I NS 
1 m RS l m-2 mm-1 runoff 0.014 I 0.005 III 0.006 II NS 
1 f EP g ha-1 sediment 2115 II 4619 I 1927 III NS 
1 m RS g m-2 mm-1 sediment 0.035 I 0.010 III 0.011 II NS 
1 a RT % stable soil 81 I 88 II 92 III NS 
1 a WS % stable soil 28 I 41 II 56 III *** 
1 a FTK % stable soil 13 I 31 II 63 III *** 
2 f EP l ha-1 runoff  2853 II 3509 I 2431 III NS 
2 m RS l m-2 mm-1 runoff 0.097 II 0.084 III 0.109 I NS 
2 f EP g ha-1 sediment 2435 II 6896 I 2044 III NS 
2 m RS g m-2 mm-1 sediment 0.018 III 0.039 II 0.071 I NS 
2 a RT % stable soil 87 I 88 II 91 III NS 
2 a WS % stable soil 37 I 54 II 70 III *** 
2 a FTK % stable soil 48 I 52 II 55 III *** 
3 f EP l ha-1 runoff  95 III 136 II 278 I NS 
3 m RS l m-2 mm-1 runoff 0.007 III 0.014 II 0.055 I NS 
3 f EP g ha-1 sediment 0.0041 I 0.0006 II 0.0001 III NS 
3 m RS g m-2 mm-1 sediment 0.041 II 0.010 III 0.115 I NS 
3 a RT % stable soil 88 I 91 II 92 III NS 
3 a WS % stable soil 60 I 59 I 68 III *** 
3 a FTK % stable soil 41 I 66 III 63 II NS 

Spatial scales: field level ≈0.05ha (f), micro-plots 1.5m2 (m), aggregate scale mm (a). Methods used: erosion plots (EP), rainfall 
simulations (RS), rain tower (RT), wet sieving (WS) and field test kit (FTK). NS = not significant; * = p<0.05; ** = p<0.01; *** = 
p<0.001. Ranking order: most erodible or highest erosion (I) to least erodible or lowest erosion (III). 
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Appendix L Kinetic energy of rainfall at both micro-plot and 
field plot scales 

Rainfall data was collected at each scale to gain an understanding of the results 

found. At the micro-plot scale rainfall intensities measured over a 30 minute 

period (mean) and results were recalculated to mm h-1. Rainfall at the field plot 

scale was measured using an automated system at the field scale. Rainfall was 

automatically measured every 5 minutes and the information was electronically 

stored. Calculating a form of intensity was more complex. The time periods 

involved at each spatial scale were vastly different; hourly at the micro-plot 

scale, and daily to monthly at the field scale.  

The total amount of rainfall received was considered to show differences in 

rainfall between spatial scales. Although total rainfall would show possible 

spatial scale difference it gave no comprehension as to the severity, i.e. how 

much rainfall was received over a specific period of time. Rainfall intensity has 

been shown to be closely linked to soil loss (Morgan 2005), therefore the use of 

total rainfall was abandoned as an explanation tool. However, these results were 

incorporated into the calculation of runoff coefficients and runoff and soil losses 

per unit rainfall received. 

To gain a better appreciation of the intensity of rainfall being received at the field 

plot scale, calculations were made using a form of intensity known as Ro, an 

indice used in the Morgan-Morgan-Finney model (Morgan 2005). It is calculated 

by dividing the annual or mean annual rainfall (mm) by the number of rain days 

within that year. Although appropriate to show the level of intensity received at 

this scale, the results could not be easily linked to that at the micro-plot scale and 

so were set aside. 

The basis of erosivity indices based on kinetic energy of rainfall as used in 

erosion models were then trialled. Erosivity of rainfall is calculated on intensity 

and duration of the rain storm and also the mass, diameter and velocity of the 
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raindrops within that storm. The information required for the latter part of this 

calculation was not measured during this present study, but previous research 

allows the kinetic energy of a rain storm to be calculated from rainfall intensity 

alone, through equations applicable to particular countries. The way in which 

rainfall intensity is used is a point for discussion and will be mentioned here in 

brief.  The rainfall intensity used in the calculation of kinetic energy has differed 

in past research.  Rainfall intensities (I) calculated from 30 (Wischmeier & Smith 

1978), 15 (Stocking & Elwell 1973 in Morgan 2005) and 5 (Usón & Ramos 2001 

in Morgan 2005) minute periods have all been used. Calculating rainfall intensity 

over a shorter period of time was felt to be the most appropriate measurement of 

intensity at the field scale.  

The maximum rainfall intensity over 30, 15 and 5 minute periods were all tried 

but it was found that the use of 5 minute periods was the most accessible. This 

was because the automated rainfall collector measured rainfall every 5 minutes of 

every day during the experiment. The experiment ran for over 2 years which 

resulted in a very extensive database from which proved difficult to extract 

specific information. In analysing the results, it was found that for the majority of 

time at both sites very little rain fell. On days when rain fell it was sporadic often 

with no more than 5-10 minutes of rain fall at any particular time. Rainfall 

intensities measured over a 5 minute period (I5) where the most suitable as to not 

miss any large rainfall events, which might be lost using I15 or I30 indexes. 

As previously stated rainfall was not always continuous and so the kinetic energy 

of a rain storm could not be calculated. The kinetic energy (KE) was calculated 

for the maximum 5 minute intensity. The equation used to calculate the KE was 

that used by Hudson (1965) from work carried out in Zimbabwe and was applied 

to intensities above 10 mm h-1, which is more applicable to temperate latitudes 

(Morgan 2005). The calculation of kinetic energy can be found in Equation L.1 

where, KE represents the kinetic energy of rain (MJ ha-1 mm-1) and I is the 

rainfall intensity (mm h-1).  
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I
KE 29.41298.0                                     (L.1) 

The results of rainfall intensity and kinetic energy can be seen in Table L.1. The 

maximum rainfall intensity received was in all but one case greater on the micro-

plots than the field plots at both site locations. The one exception was during 

season four at Loddington where the opposite was true. As all maximum rainfall 

intensities measured were over 10 mm h-1 the maximum kinetic energy could be 

calculated. The relationship between spatial scales followed that of the maximum 

I5 results; the kinetic energy was greater on the micro-plots except during season 

four at Loddington where KE was greater on the erosion field plots. The mean I5 

was also calculated, the results were greatly lower on the field erosion plots 

compared to the micro-plots. The rainfall intensities were below 10 and so the 

kinetic energy could not be calculated for average rainfall on the field plots. 

Table L.1 Calculation of erosivity and rainfall intensity at both sites 

Spatial 
scale 

Season Max I5 
(mm) 

Max I 
(mm h-1) 

KE > 10 
(MJ ha-1 mm-1) 

Mean I5 
(mm) 

Mean I 
(mm h-1) 

Site location: Loddington 

EP 1 1.40 16.80 0.022 0.25 2.94 
MP 1  34.41 0.261  32.18 
EP 2 2.20 26.40 0.250 0.24 2.90 
MP 2  42.12 0.268  32.79 
EP 3 1.60 19.20 0.231 0.27 3.24 
MP 3  45.64 0.270  37.33 
EP 4 4.80 57.60 0.276 0.26 3.09 
MP 4  53.44 0.274  40.62 
EP mean 2.5 30.00 0.255 0.25 3.04 
MP mean  43.90 0.269  35.73 

Site location: Tivington 

EP 2 3.00 36.00 0.262 0.26 3.09 
MP 2  48.88 0.272  31.60 
EP 3 3.20 38.40 0.265 0.24 2.88 
MP 3  49.02 0.272  37.11 
EP mean 3.10 37.20 0.264 0.25 2.99 
MP mean  48.95 0.272  34.36 

Site location: Both (gravity-fed rain tower) 

Aggregate n/a  40.44 0.266  35.48 
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Appendix M Wind velocities 

Site Season/Mean Mean velocity 
(m s-1) 

Maximum velocity 
(m s-1) 

Beaufort scale*

Loddington 1 1.86 4.93  

 2 2.63 9.44  

 3 1.96 5.48  

 4 2.31 7.36  

 mean 2.19  Gentle breeze 

Tivington 1 0.84 3.24  

 2 1.47 6.12  

 3 1.34 4.66  

 mean 1.26  Just perceptible 

* scale obtained from www.metoffice.com 
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