46 research outputs found

    Electric-field control of magnetic ordering in the tetragonal BiFeO3

    Full text link
    We propose a way to use electric-field to control the magnetic ordering of the tetragonal BiFeO3. Based on systematic first-principles studies of the epitaxial strain effect on the ferroelectric and magnetic properties of the tetragonal BiFeO3, we find that there exists a transition from C-type to G-type antiferromagnetic (AFM) phase at in-plane constant a ~ 3.905 {\AA} when the ferroelectric polarization is along [001] direction. Such magnetic phase transition can be explained by the competition between the Heisenberg exchange constant J1c and J2c under the influence of biaxial strain. Interestingly, when the in-plane lattice constant enlarges, the preferred ferroelectric polarization tends to be canted and eventually lies in the plane (along [110] direction). It is found that the orientation change of ferroelectric polarization, which can be realized by applying external electric-field, has significant impact on the Heisenberg exchange parameters and therefore the magnetic orderings of tetragonal BiFeO3. For example, at a ~ 3.79 {\AA}, an electric field along [111] direction with magnitude of 2 MV/cm could change the magnetic ordering from C-AFM to G-AFM. As the magnetic ordering affects many physical properties of the magnetic material, e.g. magnetoresistance, we expect such strategy would provide a new avenue to the application of multiferroic materials.Comment: 4 pages, 4 figure

    Finite-size effects on the magnetoelectric response of field-driven ferroelectric/ferromagnetic chains

    Full text link
    We study theoretically the coupled multiferroic dynamics of one-dimensional ferroelectric/ferromagnet chains driven by harmonic magnetic and electric fields as a function of the chain length. A linear magnetoelectric coupling is dominated by the spin-polarized screening charge at the interface. We performed Monte-Carlo simulations and calculations based on the coupled Landau-Lifshitz-Gilbert and Landau-Khalatnikov equations showing that the net magnetization and the total polarization of thin heterostructures, i.e. with up to ten ferroelectric and ferromagnetic sites counted from the interface, can be completely reversed by external electric and magnetic fields, respectively. However, for larger system solely a certain magnetoelectrical control can be achieved.Comment: J. Phys.: Conf. Series. (2011) (to be published

    Temperature Driven Structural Phase Transition in Tetragonal-Like BiFeO3

    Full text link
    Highly-strained BiFeO3 exhibits a "tetragonal-like, monoclinic" crystal structure found only in epitaxial films (with an out-of-plane lattice parameter exceeding the in-plane value by >20%). Previous work has shown that this phase is properly described as a MC_{C} monoclinic structure at room temperature [with a (010)pc_{pc} symmetry plane, which contains the ferroelectric polarization]. Here we show detailed temperature-dependent x-ray diffraction data that evidence a structural phase transition at ~100C to a high-temperature MA_{A} phase ["tetragonal-like" but with a (1-10)pc_{pc} symmetry plane]. These results indicate that the ferroelectric properties and domain structures of strained BiFeO3_3 will be strongly temperature dependent.Comment: 10 pages, 3 figure

    Piezoresponse Force Spectroscopy of Ferroelectric Materials

    Get PDF
    Piezoresponse Force Spectroscopy (PFS) has emerged as a powerful technique for probing highly localized switching behavior and the role of microstructure and defects on switching. The application of a dc bias to a scanning probe microscope tip in contact with a ferroelectric surface results in the nucleation and growth of a ferroelectric domain below the tip, resulting in changes in local electromechanical response. Resulting hysteresis loops contains information on local ferroelectric switching behavior. The signal in PFS is the convolution of the volume of the nascent domain and the probing volume of the tip. Here, we analyze the signal formation mechanism in PFS by deriving the main parameters of domain nucleation in a semi-infinite material and establishing the relationships between domain parameters and PFM signal using a linear Greens function theory. The effect of surface screening and finite Debye length on the switching behavior is established. In particular, we predict that the critical nucleus size in PFM is controlled by the surface screening mechanism and in the absence of screening, tip-induced switching is impossible. Future prospects of PFS to study domain nucleation in the vicinity of defects, local switching centers in ferroelectrics, and unusual polarization states in low-dimensional ferroelectrics are discussed.Comment: 74 pages, 18 figures, 3 appendices, sent to Phys. Rev.

    Phase transition close to room temperature in BiFeO3 thin films

    Full text link
    BiFeO3 (BFO) multiferroic oxide has a complex phase diagram that can be mapped by appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, displays a reversible temperature-induced phase transition at about 100\circ, thus close to room temperature.Comment: accepted in J. Phys.: Condens. Matter (Fast Track Communication

    Test of the Kolmogorov-Johnson-Mehl-Avrami picture of metastable decay in a model with microscopic dynamics

    Full text link
    The Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for the time evolution of the order parameter in systems undergoing first-order phase transformations has been extended by Sekimoto to the level of two-point correlation functions. Here, this extended KJMA theory is applied to a kinetic Ising lattice-gas model, in which the elementary kinetic processes act on microscopic length and time scales. The theoretical framework is used to analyze data from extensive Monte Carlo simulations. The theory is inherently a mesoscopic continuum picture, and in principle it requires a large separation between the microscopic scales and the mesoscopic scales characteristic of the evolving two-phase structure. Nevertheless, we find excellent quantitative agreement with the simulations in a large parameter regime, extending remarkably far towards strong fields (large supersaturations) and correspondingly small nucleation barriers. The original KJMA theory permits direct measurement of the order parameter in the metastable phase, and using the extension to correlation functions one can also perform separate measurements of the nucleation rate and the average velocity of the convoluted interface between the metastable and stable phase regions. The values obtained for all three quantities are verified by other theoretical and computational methods. As these quantities are often difficult to measure directly during a process of phase transformation, data analysis using the extended KJMA theory may provide a useful experimental alternative.Comment: RevTex, 21 pages including 14 ps figures. Submitted to Phys. Rev. B. One misprint corrected in Eq.(C1

    Origin of lowered bandgap in Bi 2

    No full text
    corecore