12,794 research outputs found
Possibilities and limitations of protein supply in organic poultry and pig production
It is one of the general recommendations in animal nutrition that the diet should be formulated according to the specific requirements of animals at the various stages of their development. To which degree the farmer can adapt the nutrient supply to the specific requirements of the animals depends primarily on the production goal and on the availability of nutrient resources. This report gives a general introduction to the present situation for dietary protein supply to poultry and pig production in relation to the principles for organic agriculture and husbandry production. Furthermore it includes partly literature based on research from conventional animal production, as the requirements on the level of the animals are not different in both systems. Moreover, there only few research projects of organic production systems available.
This report is primarily focussing on the question whether a nutrient supply of 100% organic feed can and should be realised. In this context, it is not possible to cover all aspects in detail as the report cannot replace a textbook. The main emphasis is laid on a coherent argumentation based on the leading ideas of organic agriculture. Concerning further relevant aspects it is referred to the report ”Supply and demand for concentrated organic feed in the EU in 2002 and 2003” by Susanne Padel as part of the same EU-project: ‘Research to support the EU-regulation on Organic Agriculture’ (www.organic-revision.org) and to the project “Availability of organically reared livestock” (S. Gomez, JRC, Institute for Prospective Technological Studies, this study is expected to be completed in November 2005).
In conventional animal production, a nutrient supply that is closely related to the requirements is an important tool in the performance-oriented production (FLACHOWSKY, 1998). The objective of animal nutrition is to adapt the nutrient supply as accurately as possible to the requirements resulting from maintenance and performance need. Soybean meal, due to the high protein content and high protein quality, has developed into the most important protein source in the nutrition of monogastric animals. Additionally, synthetic amino acids (DL-methionine) and industrial amino acids (produced from microbial fermentation, L-amino acids) are used to balance the supply of essential amino acids.
While the use of soybean meal and synthetic amino acids is normal practice in conventional animal production, the Council-Regulation No. 2092/91, amended by Council Regulation No. 1804/99 on organic livestock production bans the use of chemically extracted soybean meal and synthetic amino acids on organic farms as livestock must be fed primarily on organically produced feedstuffs (Annex 1, paragraph 4.2). By way of a derogation from paragraph 4.2, for a transitional period expiring on 24 August 2005, the use of a limited proportion of non-organic feedstuffs is authorised where farmers can show to the satisfaction of the inspection body that they are unable to obtain feed exclusively from organic production (paragraph 4.8). The derogation, although with a declining percentage of non-organic feedstuffs over the next years, has been prolonged in July 2005.
The preferable use of home-grown feedstuffs and limitations in the choice of boughtin
feedstuffs can be the cause of considerable variation in the composition of the diets, and considerably restrict the possibilities for the adaptation of the feed ration to the specific requirements. Due to the limited availability of essential amino acids in particular, there is concern that nutritional imbalances encountered in practice might lead to deteriorating animal health and welfare. On the other hand, there is also the concern that allowing conventional feedstuffs to be fed in organic livestock production will result in intensification of production. The intensification might cause the same problems in organic production as conventional production already shows (animal health problems, risk of residues and GM contamination etc.). Thus, the use of non-organic feedstuffs may have a damaging effect on consumer confidence in organic products of animal origin.
In the following the nutritional-physiological effects of a variation in protein supply with respect to growth performance and protein accretion in broilers, turkeys, laying hens, and pigs are examined by means of a literature review. Additionally, the potential effects of the protein content in the diet on product quality, animal health and environmental damage are addressed.
It is the aim of the report to provide an overview of the many different aspects of the protein supply in organic poultry and pig production. Many different aspects are taken into account to elaborate possibilities to handle the use of organic and non-organic feedstuffs with respect to the objectives and framework conditions of organic livestock production. However, due to the complex interactions not all aspects can be covered. There is room and need for explanation and for further research
Dynamical symmetry breaking in transport through molecules
We analyze the interplay between vibrational and electronic degrees of
freedom in charge transport across a molecular single-electron transistor. We
focus on the wide class of molecules which possess quasi-degenerate vibrational
eigenstates, while no degeneracy occurs for their anionic configuration. We
show that the combined effect of a thermal environment and coupling to leads,
involving tunneling events charging and discharging the molecule, leads to a
dynamical symmetry breaking where quasi-degenerate eigenstates acquire
different occupations. This imbalance gives rise to a characteristic asymmetry
of the current versus an applied gate voltage.Comment: 4 pages, 2 figures, revised final published versio
Interfaces Within Graphene Nanoribbons
We study the conductance through two types of graphene nanostructures:
nanoribbon junctions in which the width changes from wide to narrow, and curved
nanoribbons. In the wide-narrow structures, substantial reflection occurs from
the wide-narrow interface, in contrast to the behavior of the much studied
electron gas waveguides. In the curved nanoribbons, the conductance is very
sensitive to details such as whether regions of a semiconducting armchair
nanoribbon are included in the curved structure -- such regions strongly
suppress the conductance. Surprisingly, this suppression is not due to the band
gap of the semiconducting nanoribbon, but is linked to the valley degree of
freedom. Though we study these effects in the simplest contexts, they can be
expected to occur for more complicated structures, and we show results for
rings as well. We conclude that experience from electron gas waveguides does
not carry over to graphene nanostructures. The interior interfaces causing
extra scattering result from the extra effective degrees of freedom of the
graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes
to conclusion
N-glycans of human amniotic fluid transferrin stimulate progesterone production in human first trimester trophoblast cells in vitro
Aims: During pregnancy, the placenta produces a variety of steroid hormones and proteins. Several of these substances have been shown to exert immunomodulatory effects. Progesterone is thought to mediate some of these effects by regulating uterine responsiveness. The aim of this study was to clarify the effect of amniotic fluid transferrin and its N-glycans on the release of progesterone by first trimester trophoblast cells in vitro. Methods: Cytotrophoblast cells were prepared from human first trimester placentae by trypsin-DNAse dispersion of villous tissue followed by a percoll gradient centrifugation and depletion of CD45 positive cells by magnetic cell sorting. Trophoblasts were incubated with varying concentrations (50-300 mug/ml) of transferrin from human amniotic fluid and serum as well as with N-glycans obtained from amniotic fluid transferrin. Culture supernatants were assayed for progesterone by enzyme-immunometric methods. Results: The release of progesterone increased in amniotic fluid transferrin- and N-glycan-treated trophoblast cell cultures compared to untreated trophoblast cells. There was no stimulating effect of serum transferrin on the progesterone production of trophoblast cells. Conclusions: The results suggest that amnion-transferrin and especially its N-glycans modulate the endocrine function of trophoblasts in culture by up regulating progesterone secretion
Semiclassical Approach to Orbital Magnetism of Interacting Diffusive Quantum Systems
We study interaction effects on the orbital magnetism of diffusive mesoscopic
quantum systems. By combining many-body perturbation theory with semiclassical
techniques, we show that the interaction contribution to the ensemble averaged
quantum thermodynamic potential can be reduced to an essentially classical
operator. We compute the magnetic response of disordered rings and dots for
diffusive classical dynamics. Our semiclassical approach reproduces the results
of previous diagrammatic quantum calculations.Comment: 8 pages, revtex, includes 1 postscript fi
Sampling functions for multimode homodyne tomography with a single local oscillator
We derive various sampling functions for multimode homodyne tomography with a
single local oscillator. These functions allow us to sample multimode
s-parametrized quasidistributions, density matrix elements in Fock basis, and
s-ordered moments of arbitrary order directly from the measured quadrature
statistics. The inevitable experimental losses can be compensated by proper
modification of the sampling functions. Results of Monte Carlo simulations for
squeezed three-mode state are reported and the feasibility of reconstruction of
the three-mode Q-function and s-ordered moments from 10^7 sampled data is
demonstrated.Comment: 12 pages, 8 figures, REVTeX, submitted Phys. Rev.
Chaos and Interacting Electrons in Ballistic Quantum Dots
We show that the classical dynamics of independent particles can determine
the quantum properties of interacting electrons in the ballistic regime. This
connection is established using diagrammatic perturbation theory and
semiclassical finite-temperature Green functions. Specifically, the orbital
magnetism is greatly enhanced over the Landau susceptibility by the combined
effects of interactions and finite size. The presence of families of periodic
orbits in regular systems makes their susceptibility parametrically larger than
that of chaotic systems, a difference which emerges from correlation terms.Comment: 4 pages, revtex, includes 3 postscript fig
- …