149 research outputs found

    Multi-Point Orientation Control of Discretely-Magnetized Continuum Manipulators

    Get PDF
    In the past decade, remote actuation through magnetic fields has been used for position and orientation control of continuum manipulators (CMs) with a single magnet at the distal tip. By leveraging multiple points of actuation along the length of the CM it is possible to achieve increasingly complex shapes, which could be of interest in complex navigation tasks, for example, in minimally invasive surgery. In this study we present an approach for multi-point orientation control of discretely magnetized CMs. The approach is demonstrated with a manipulator that contains two permanent magnets, which are each actuated inside a non-homogeneous magnetic field. We formulate an accurate field model that conforms to Maxwell's equations and apply this to the available actuation system. Furthermore, Cosserat rod theory is used to model the manipulator deformation under external wrenches, and is utilized to numerically compute a Jacobian necessary to calculate the actuation inputs. During experiments, a stereo vision setup is used for manipulator shape feedback. Target orientations are manually provided as input to show independent orientation control of the two permanent magnets. Additionally, simulations with an extended virtual clone of the electromagnetic system are performed to show the capability of achieving more complex manipulator shapes. In both scenarios, it is observed that the algorithm is able to independently control the orientation of two interconnected magnets in a non-uniform magnetic field

    Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems

    Get PDF
    Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm−2) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.</p

    MagNeed - Needle-Shaped Electromagnets for Localized Actuation Within Compact Workspaces

    Get PDF
    Electromagnetic actuation of micro-/milli-sized agents has traditionally relied on large electromagnets positioned at considerable distances from the agents. As a result, the electromagnets consume kilowatts of power to overcome the limited generation of magnetic field gradients. Miniaturized electromagnets offer an alternative approach for reducing power consumption via localized actuation of micro-/milli-sized agents. Typically, the generation of magnetic field gradients in the vicinity of a miniaturized electromagnet is comparable with traditional electromagnetic actuation systems. Miniaturized electromagnets can be positioned near target sites in microfluidic channels or ex vivo vasculatures. Thereby, localized trapping and actuation of magnetic micro-/milli-sized agents are carried out. This study introduces MagNeed - an electromagnetic actuation system composed of three needle-shaped electromagnets (NSEs). MagNeed can determine compact workspaces by positioning the NSEs at different spatial configurations. Each NSE generates magnetic field gradients (up to 3.5 T/m at 5 mm from the NSE tip axis) while keeping a maximum power consumption (0.5 W) and temperature (&lt; 42°C). MagNeed is complemented by a framework that reconstructs the pose of the NSEs. Experiments test MagNeed and framework on a transparent Teflon tube (5 mm inner diameter). MagNeed demonstrates localized trapping and actuation of a 1 mm NdFeB bead against a flow of water and silica gel particles (1-3 mm diameter).</p

    Down-Regulation of miR-101 in Endothelial Cells Promotes Blood Vessel Formation through Reduced Repression of EZH2

    Get PDF
    Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Underlying Event measurements in pp collisions at s=0.9 \sqrt {s} = 0.9 and 7 TeV with the ALICE experiment at the LHC

    Full text link

    Concentric Tube-Inpsired Magnetic Reconfiguration of Variable Stiffness Catheters for Needle Guidance

    Get PDF
    Guiding catheters assist in delivering hazardous equipment such as needles through non-solid mediums likecavities and vasculature. Traditionally, metallic needles are passed through metallic guiding catheters, which are limited to linear paths or require anatomy-specific designs. Recently, variable stiffnessactive guiding catheters (AGCs) made of shape memory polymers have been developed. These AGCs can adapt to anatomy and guide equipment in their rubber and glass phases, respectively. However, passing needles can cause deflectionof the AGC and misalignment with the target. To address this, magnetic configuration of AGCs based on concentric-tube models is proposed to compensate for needle-induced AGC deflection. Experiments demonstrate shape configuration of AGCs using magnetic fields computed pre-experimentally, followed by needle guidance to three different targets. The results show AGC deflection of up to 69 and needle-induced backward deflection up to 39, with a maximum target misalignment of 4.</p
    corecore