31,159 research outputs found

    Comment on "Density of States and Critical Behavior of the Coulomb Glass"

    Full text link
    In a recent numerical investigation of the Coulomb glass, Surer et al. [Phys. Rev. Lett. 102, 067205 (2009)] concluded that their simulation results are consistent with the Efros Shklovskii prediction for the density of states in the three-dimensional case. Here, we show that this statement has no relevance concerning the problem of the asymptotic behavior in the Coulomb gap since it is based on unjustified assumptions. Moreover, for the random-displacement Coulomb glass model, we demonstrate that a part of the density of states data by Surer et al. erroneously exhibit a broad gap. This is related to the staggered occupation being instable contrary to their findings.Comment: Submitted to Physical Review Letters, 1 page, 1 figur

    Bipedal steps in the development of rhythmic behavior in humans

    No full text
    We contrast two related hypotheses of the evolution of dance: H1: Maternal bipedal walking influenced the fetal experience of sound and associated movement patterns; H2: The human transition to bipedal gait produced more isochronous/predictable locomotion sound resulting in early music-like behavior associated with the acoustic advantages conferred by moving bipedally in pace. The cadence of walking is around 120 beats per minute, similar to the tempo of dance and music. Human walking displays long-term constancies. Dyads often subconsciously synchronize steps. The major amplitude component of the step is a distinctly produced beat. Human locomotion influences, and interacts with, emotions, and passive listening to music activates brain motor areas. Across dance-genres the footwork is most often performed in time to the musical beat. Brain development is largely shaped by early sensory experience, with hearing developed from week 18 of gestation. Newborns reacts to sounds, melodies, and rhythmic poems to which they have been exposed in utero. If the sound and vibrations produced by footfalls of a walking mother are transmitted to the fetus in coordination with the cadence of the motion, a connection between isochronous sound and rhythmical movement may be developed. Rhythmical sounds of the human mother locomotion differ substantially from that of nonhuman primates, while the maternal heartbeat heard is likely to have a similar isochronous character across primates, suggesting a relatively more influential role of footfall in the development of rhythmic/musical abilities in humans. Associations of gait, music, and dance are numerous. The apparent absence of musical and rhythmic abilities in nonhuman primates, which display little bipedal locomotion, corroborates that bipedal gait may be linked to the development of rhythmic abilities in humans. Bipedal stimuli in utero may primarily boost the ontogenetic development. The acoustical advantage hypothesis proposes a mechanism in the phylogenetic development

    Semiclassical Theory of Chaotic Quantum Transport

    Get PDF
    We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics that including off-diagonal contributions to double sums over classical paths gives a weak-localization correction in quantitative agreement with results from random matrix theory. We further discuss the magnetic field dependence. This semiclassical treatment accounts for current conservation.Comment: 4 pages, 1 figur

    Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard

    Full text link
    This article presents experimental results on properties of waves propagating in an unbounded and a bounded photonic crystal consisting of metallic cylinders which are arranged in a triangular lattice. First, we present transmission measurements of plane waves traversing a photonic crystal. The experiments are performed in the vicinity of a Dirac point, i.e., an isolated conical singularity of the photonic band structure. There, the transmission shows a pseudodiffusive 1/L dependence, with LL being the thickness of the crystal, a phenomenon also observed in graphene. Second, eigenmode intensity distributions measured in a microwave analog of a relativistic Dirac billiard, a rectangular microwave billiard that contains a photonic crystal, are discussed. Close to the Dirac point states have been detected which are localized at the straight edge of the photonic crystal corresponding to a zigzag edge in graphene

    Multiple ionization of neon by soft X-rays at ultrahigh intensity

    Full text link
    At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a minimal model and an elaborate description. Both approaches are based on rate equations and take into acccout a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude, that photoionization up to a charge of 5+ can be described by the minimal model. For higher charges, the experimental ionization yields systematically exceed the elaborate rate based prediction.Comment: 10 pages, 3 figure

    Prevalence of marginally unstable periodic orbits in chaotic billiards

    Full text link
    The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both {\it exist} and {\it strongly influence} the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.Comment: 6 pages, 5 figure
    corecore