4 research outputs found
ConnectivitĂ© synaptique et intĂ©gration du signal de direction de la tĂȘte dans le prĂ©subiculum chez la souris
Le prĂ©subiculum (PrS) est une structure clĂ© pour le codage de lâorientation spatiale ; il est localisĂ© entre lâhippocampe et le cortex entorhinal. Il fait partie du circuit de direction de la tĂȘte, et ses neurones sont sensibles Ă la direction de la tĂȘte. Le presubiculum est stratĂ©giquement positionnĂ© pour intĂ©grer des entrĂ©es sensorielles vestibulaires et des informations sur les repĂšres visuels de lâenvironnement, relayĂ©es respectivement par le noyau thalamique antĂ©rieur (ATN) et le cortex rĂ©trosplenial (RSC). Au cours de mon doctorat, jâai Ă©tudiĂ© la connectivitĂ© fonctionnelle entre ces deux rĂ©gions affĂ©rentes et le microcircuit du PrS composĂ© de neurones pyramidaux et dâinterneurones inhibiteurs. Jâai utilisĂ© des techniques de traçages anatomiques, dâoptogĂ©nĂ©tique et dâenregistrements Ă©lectrophysiologiques en patch-clamp dans des tranches de cerveau de souris. Mes expĂ©riences de traçage rĂ©trogrades ont montrĂ© que les neurones de lâATN et du RSC constituaient les entrĂ©es principales du PrS. Lâutilisation de vecteurs viraux antĂ©rogrades a permis lâexpression dâopsines fusionnĂ©es Ă une protĂ©ine rapportrice fluorescente dans lâATN et le RSC, ainsi que la photostimulation des projections axonales de ces rĂ©gions dans le presubiculum. Jâai pu ainsi montrer que les axones thalamiques ciblaient les couches I et III du PrS, sur lâensemble de lâaxe dorso-ventral. Les axones du RSC se ramifiaient Ă©galement dans les couches I et III mais uniquement dans la portion dorsale du PrS. La photostimulation des axones ATN et RSC initiaient des Ă©vĂšnements postsynaptiques excitateurs dans les neurones pyramidaux de la couche III avec de courtes latences monosynaptiques. Ces Ă©vĂšnements Ă©taient mĂ©diĂ©s par des rĂ©cepteurs AMPA et NMDA et persistaient en prĂ©sence de TTX et 4-AP. Les propriĂ©tĂ©s intrinsĂšques de ces neurones Ă©taient similaires, indiquant que les affĂ©rences ATN et RSC ciblent une mĂȘme population neuronale. Pour Ă©tudier directement la convergence des affĂ©rences ATN et RSC sur des neurones uniques, jâai exprimĂ© des opsines sensibles Ă la lumiĂšres bleue et Ă la lumiĂšre rouge, Chronos et Chrimson, respectivement dans lâATN et le RSC. La stimulation optique combinĂ©e des axones affĂ©rents a montrĂ© que les neurones de la couche III reçoivent des entrĂ©es Ă la fois de lâATN et du RSC. Une activation simultanĂ©e des affĂ©rences a Ă©voquĂ© une sommation supra-linĂ©aire dans ces neurones. Cette non-linĂ©aritĂ© pourrait rĂ©sulter dâune amplification des PPSEs par lâactivation de courants intrinsĂšques ou dâun changement de la balance excitation-inhibition dans les neurones post synaptiques. Jâai cherchĂ© Ă savoir si les interneurones VIP du PrS pouvaient favoriser lâassociation des signaux de direction de la tĂȘte provenant de lâATN avec les informations de repĂšres visuels du RSC par des motifs de dĂ©sinhibition. Les propriĂ©tĂ©s des interneurones VIP ont montrĂ© quâil en existait deux sous-populations. Jâai trouvĂ© que certains de ces interneurones sont connectĂ©s de maniĂšre directe par les affĂ©rences ATN et RSC, ce qui pourrait suggĂ©rer quâils jouent bien un rĂŽle dans la mise Ă jour du signal de direction de la tĂȘte. Enfin, jâai enregistrĂ© des neurones pyramidaux de la couche IV. Des marquages rĂ©trogrades ont montrĂ© quâils projetaient vers le noyau mamillaire latĂ©ral (LMN). Leur profil de dĂ©charge en bouffĂ©es de potentiels dâaction est dĂ©pendant des canaux calciques de type T. Ces neurones Ă©taient principalement connectĂ©s de maniĂšre indirecte par lâATN et le RSC, probablement via les neurones de la couche III. Ma thĂšse de doctorat a permis de dĂ©montrer que le microcircuit du PrS est adaptĂ© pour lâintĂ©gration des signaux de direction de la tĂȘte dâorigine vestibulaire provenant de lâATN et des informations visuelles du RSC. Les neurones Ă dĂ©charge en bouffĂ©e de la couche IV pourraient transmettre les informations sur les repĂšres visuels pour lâactualisation du signal de direction de la tĂȘte en amont, au LMN.The presubiculum is a key structure for spatial orientation coding, located between the hippocampus and the entorhinal cortex. It is part of the brain wide head direction circuit, and its neurons are sensitive to an animalsâ head direction. The presubiculum is well positioned to integrate vestibular sensory input and visual landmark information, conveyed via the anterior thalamic nuclei (ATN) and the retrosplenial cortex (RSC), respectively. During my PhD, I investigated the functional connectivity between these two afferent regions and the presubicular microcircuit, including principal pyramidal cells and inhibitory neurons. I used anatomical tracing, optogenetics and electrophysiological patch clamp recordings in mouse brain slices. Retrograde tracing experiments showed that neurons in ATN and in RSC provide major inputs to the presubiculum. Anterograde viral vectors were used to express opsins fused to a fluorescent reporter protein in the ATN or the RSC, in order to specifically stimulate transfected axons in the presubiculum with light. I show that thalamic axons target the superficial layers I and III of the presubiculum, across the entire ventral-to-dorsal axis. RSC axons ramify in layers I and III of the dorsal portion of the presubiculum only. Photostimulation of either ATN or RSC axons initiated excitatory postsynaptic events in presubicular layer III neurons, with short, monosynaptic latencies. Light-evoked EPSPs were mediated by AMPA and NMDA receptors, and persisted in the presence of TTX and 4-AP. The intrinsic properties of the recorded postsynaptic neurons were similar, indicating that thalamic and retrosplenial inputs target a same population of pyramidal neurons in layer III. To directly investigate the convergence of ATN and RSC inputs onto single neurons, I expressed blue and red shifted opsins, Chronos and Chrimson, in the ATN and the RSC, respectively. Combined, double wavelength stimulation of opsin-expressing axons in the presubiculum showed that pyramidal layer III neurons receive synaptic inputs from both ATN and RSC. Simultaneous activation of ATN and RSC fibers showed supralinear summation, for 8 out of 11 cells tested. Non-linear EPSP amplification was dependent on NMDA receptor activation and voltage dependent intrinsic currents, and facilitated in the presence of GABA blockers. I asked whether VIP interneurons in the PrS could favor the association of head directional input form ATN and landmark input from the RSC, via disinhibition. VIP interneurons were highly excitable neurons that fell in two subpopulations according to their electrophysiological properties. At least some VIP interneurons were directly connected by ATN and RSC inputs supporting the idea that they could gate the updating of the head direction signal. Finally, I recorded from layer IV pyramidal neurons in the presubiculum. Retrograde labeling showed that they project to the lateral mammillary nucleus (LMN). Their intrinsic burst firing pattern is supported by t-type Calcium currents. Layer IV neurons were mostly indirectly connected by ATN and RSC, presumably via layer III neurons. My PhD thesis has demonstrated that the presubicular microcircuit is well suited for the integration of vestibular based head direction signals from ATN with visual information from RSC. Layer IV intrinsically bursting neurons may transmit visual landmark updating of the head direction signal to the upstream LMN
In Vivo Intracerebral Stereotaxic Injections for Optogenetic Stimulation of Long-Range Inputs in Mouse Brain Slices
International audienceKnowledge of cell type specific synaptic connectivity is a crucial prerequisite for understanding brain wide neuronal circuits. The functional investigation of long-range connections requires targeted recordings of single neurons combined with the specific stimulation of identified distant inputs. This is often difficult to achieve with conventional, electrical stimulation techniques, because axons from converging upstream brain areas may intermingle in the target region. The stereotaxic targeting of a specific brain region for virus-mediated expression of light sensitive ion channels allows to selectively stimulate axons coming from that region with light. Intracerebral stereotaxic injections can be used in well-delimited structures, such as the anterodorsal thalamic nuclei, and also in other subcortical or cortical areas throughout the brain. Here we describe a set of techniques for precise stereotaxic injection of viral vectors expressing channelrhodopsin in the anterodorsal thalamus, followed by photostimulation of their axon terminals in hippocampal slices. In combination with whole-cell patch clamp recording from a postsynaptically connected presubicular neuron, photostimulation of thalamic axons allows the detection of functional synaptic connections, their pharmacological characterization, and the evaluation of their strength in the brain slice preparation. We demonstrate that axons originating in the anterodorsal thalamus ramify densely in presubicular layers 1 and 3. The photostimulation of Chronos expressing thalamic axon terminals in presubiculum initiates short latency postsynaptic responses in a presubicular layer3 neuron, indicating a monosynaptic connection. In addition, biocytin filling of the recorded neuron and posthoc revelation confirms the layer localization and pyramidal morphology of the postsynaptic neuron. Taken together, the optogenetic stimulation of long-range inputs in ex vivo brain slices is a useful method to determine the cell-type specific functional connectivity from distant brain regions
Oligodendrocyte secreted factors shape hippocampal GABAergic neuron transcriptome and physiology
International audienceOligodendrocytes form myelin for central nervous system axons and release factors which signal to neurons during myelination. Here, we ask how oligodendroglial factors influence hippocampal GABAergic neuron physiology. In mixed hippocampal cultures, GABAergic neurons fired action potentials (APs) of short duration and received high frequencies of excitatory synaptic events. In purified neuronal cultures without glial cells, GABAergic neuron excitability increased and the frequency of synaptic events decreased. These effects were largely reversed by adding oligodendrocyte conditioned medium (OCM). We compared the transcriptomic signature with the electrophysiological phenotype of single neurons in these three culture conditions. Genes expressed by single pyramidal or GABAergic neurons largely conformed to expected cell-type specific patterns. Multiple genes of GABAergic neurons were significantly downregulated by the transition from mixed cultures containing glial cells to purified neuronal cultures. Levels of these genes were restored by the addition of OCM to purified cultures. Clustering genes with similar changes in expression between different culture conditions revealed processes affected by oligodendroglial factors. Enriched genes are linked to roles in synapse assembly, AP generation, and transmembrane ion transport, including of zinc. These results provide new insight into the molecular targets by which oligodendrocytes influence neuron excitability and synaptic function