10 research outputs found

    Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial

    Get PDF
    Background: Febuxostat and allopurinol are urate-lowering therapies used to treat patients with gout. Following concerns about the cardiovascular safety of febuxostat, the European Medicines Agency recommended a post-licensing study assessing the cardiovascular safety of febuxostat compared with allopurinol. Methods: We did a prospective, randomised, open-label, blinded-endpoint, non-inferiority trial of febuxostat versus allopurinol in patients with gout in the UK, Denmark, and Sweden. Eligible patients were 60 years or older, already receiving allopurinol, and had at least one additional cardiovascular risk factor. Those who had myocardial infarction or stroke in the previous 6 months or who had severe congestive heart failure or severe renal impairment were excluded. After a lead-in phase in which allopurinol dose was optimised towards achieving a serum urate concentration of less than 0·357 mmol/L (<6 mg/dL), patients were randomly assigned (1:1, with stratification according to previous cardiovascular events) to continue allopurinol (at the optimised dose) or start febuxostat at 80 mg/day, increasing to 120 mg/day if necessary to achieve the target serum urate concentration. The primary outcome was a composite of hospitalisation for non-fatal myocardial infarction or biomarker-positive acute coronary syndrome; non-fatal stroke; or cardiovascular death. The hazard ratio (HR) for febuxostat versus allopurinol in a Cox proportional hazards model (adjusted for the stratification variable and country) was assessed for non-inferiority (HR limit 1·3) in an on-treatment analysis. This study is registered with the EU Clinical Trials Register (EudraCT 2011-001883-23) and ISRCTN (ISRCTN72443728) and is now closed. Findings: From Dec 20, 2011, to Jan 26, 2018, 6128 patients (mean age 71·0 years [SD 6·4], 5225 [85·3%] men, 903 [14·7%] women, 2046 [33·4%] with previous cardiovascular disease) were enrolled and randomly allocated to receive allopurinol (n=3065) or febuxostat (n=3063). By the study end date (Dec 31, 2019), 189 (6·2%) patients in the febuxostat group and 169 (5·5%) in the allopurinol group withdrew from all follow-up. Median follow-up time was 1467 days (IQR 1029–2052) and median on-treatment follow-up was 1324 days (IQR 870–1919). For incidence of the primary endpoint, on-treatment, febuxostat (172 patients [1·72 events per 100 patient-years]) was non-inferior to allopurinol (241 patients [2·05 events per 100 patient-years]; adjusted HR 0·85 [95% CI 0·70–1·03], p<0·0001). In the febuxostat group, 222 (7·2%) of 3063 patients died and 1720 (57·3%) of 3001 in the safety analysis set had at least one serious adverse event (with 23 events in 19 [0·6%] patients related to treatment). In the allopurinol group, 263 (8·6%) of 3065 patients died and 1812 (59·4%) of 3050 had one or more serious adverse events (with five events in five [0·2%] patients related to treatment). Randomised therapy was discontinued in 973 (32·4%) patients in the febuxostat group and 503 (16·5%) patients in the allopurinol group. Interpretation: Febuxostat is non-inferior to allopurinol therapy with respect to the primary cardiovascular endpoint, and its long-term use is not associated with an increased risk of death or serious adverse events compared with allopurinol. Funding: Menarini, Ipsen, and Teijin Pharma Ltd

    Replication of association of the apolipoprotein A1-C3-A4 gene cluster with the risk of gout.

    No full text
    OBJECTIVE: Gout is associated with dyslipidaemia. Association of the apolipoprotein A1-C3-A4 gene cluster with gout has previously been reported in a small study. To investigate a possible causal role for this locus in gout, we tested the association of genetic variants from APOA1 (rs670) and APOC3 (rs5128) with gout. METHODS: We studied data for 2452 controls and 2690 clinically ascertained gout cases of European and New Zealand Polynesian (Māori and Pacific) ancestry. Data were also used from the publicly available Atherosclerosis Risk in Communities study (n = 5367) and the Framingham Heart Study (n = 2984). Multivariate adjusted logistic and linear regression was used to test the association of single-nucleotide polymorphisms with gout risk, serum urate, triglyceride and high-density lipoprotein cholesterol (HDL-C). RESULTS: In Polynesians, the T-allele of rs670 (APOA1) increased (odds ratio, OR = 1.53, P = 4.9 × 10(-6)) and the G-allele of rs5128 (APOC3) decreased the risk of gout (OR = 0.86, P = 0.026). In Europeans, there was a strong trend to a risk effect of the T-allele for rs670 (OR = 1.11, P = 0.055), with a significant protective effect of the G-allele for rs5128 being observed after adjustment for triglycerides and HDL-C (OR = 0.81, P = 0.039). The effect at rs5128 was specific to males in both Europeans and Polynesians. Association in Polynesians was independent of any effect of rs670 and rs5128 on triglyceride and HDL-C levels. There was no evidence for association of either single-nucleotide polymorphism with serum urate levels (P ⩾ 0.10). CONCLUSION: Our data, replicating a previous study, supports the hypothesis that the apolipoprotein A1-C3-A4 gene cluster plays a causal role in gout

    GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes

    Get PDF
    Contains fulltext : 182552.pdf (publisher's version ) (Open Access)OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS: In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0x10(-8)): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58x10(-8)). CONCLUSIONS: Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia

    Immunosuppression and Immunotargeted Therapy in Acute Myeloid Leukemia - The Potential Use of Checkpoint Inhibitors in Combination with Other Treatments

    No full text

    Overview of Current Immunotherapies Targeting Mutated KRAS Cancers

    No full text

    Bibliography

    No full text
    corecore