2,292 research outputs found

    The interplay between radiation pressure and the photoelectric instability in optically thin disks of gas and dust

    Get PDF
    Previous theoretical works have shown that in optically thin disks, dust grains are photoelectrically stripped of electrons by starlight, heating nearby gas and possibly creating a dust clumping instability, the photoelectric instability (PeI), that significantly alters global disk structure. In the current work, we use the Pencil Code to perform the first numerical models of the PeI that include stellar radiation pressure on dust grains in order to explore the parameter regime in which the instability operates. In models with gas surface densities greater than ∼\sim10−4 g cm−210^{-4}~\mathrm{g}~\mathrm{cm}^{-2}, we see a variety of dust structures, including sharp concentric rings and non-axisymmetric arcs and clumps that represent dust surface density enhancements of factors of ∼\sim5−205-20 depending on the run parameters. The gas distributions show various structures as well, including clumps and arcs formed from spiral arms. In models with lower gas surface densities, vortices and smooth spiral arms form in the gas distribution, but the dust is too weakly coupled to the gas to be significantly perturbed. In one high gas surface density model, we include a large, low-order gas viscosity, and, in agreement with previous radiation pressure-free models, find that it observably smooths the structures that form in the gas and dust, suggesting that resolved images of a given disk may be useful for deriving constraints on the effective viscosity of its gas. Broadly, our models show that radiation pressure does not preclude the formation of complex structure from the PeI, but the qualitative manifestation of the PeI depends strongly on the parameters of the system. The PeI may provide an explanation for unusual disk morphologies such as the moving blobs of the AU Mic disk, the asymmetric dust distribution of the 49 Ceti disk, and the rings and arcs found in the disk around HD 141569A.Comment: 13 pages, 13 figures; submitted to Ap

    On shocks driven by high-mass planets in radiatively inefficient disks. I. Two-dimensional global disk simulations

    Get PDF
    Recent observations of gaps and non-axisymmetric features in the dust distributions of transition disks have been interpreted as evidence of embedded massive protoplanets. However, comparing the predictions of planet-disk interaction models to the observed features has shown far from perfect agreement. This may be due to the strong approximations used for the predictions. For example, spiral arm fitting typically uses results that are based on low-mass planets in an isothermal gas. In this work, we describe two-dimensional, global, hydrodynamical simulations of disks with embedded protoplanets, with and without the assumption of local isothermality, for a range of planet-to-star mass ratios 1-10 M_jup for a 1 M_sun star. We use the Pencil Code in polar coordinates for our models. We find that the inner and outer spiral wakes of massive protoplanets (M>5 M_jup) produce significant shock heating that can trigger buoyant instabilities. These drive sustained turbulence throughout the disk when they occur. The strength of this effect depends strongly on the mass of the planet and the thermal relaxation timescale; for a 10 M_jup planet embedded in a thin, purely adiabatic disk, the spirals, gaps, and vortices typically associated with planet-disk interactions are disrupted. We find that the effect is only weakly dependent on the initial radial temperature profile. The spirals that form in disks heated by the effects we have described may fit the spiral structures observed in transition disks better than the spirals predicted by linear isothermal theory.Comment: 10 pages, 8 figures. ApJ, accepte

    Dynamical and quasistatic structural relaxation paths in Pd_(40)Ni_(40)P_(20) glass

    Get PDF
    By sequential heat treatment of a Pd_(40)Ni_(40)P_(20) metallic glass at temperatures and durations for which α-relaxation is not possible, dynamic, and quasistatic relaxation paths below the glass transition are identified via ex situ ultrasonic measurements following each heat treatment. The dynamic relaxation paths are associated with hopping between nonequilibrium potential energy states of the glass, while the quasistatic relaxation path is associated with reversible β-relaxation events toward quasiequilibrium states. These quasiequilibrium states are identified with secondary potential energy minima that exist within the inherent energy minimum of the glass, thereby supporting the concept of the sub-basin/metabasin organization of the potential-energy landscape

    On the relationship between structure and dynamics in a supercooled liquid

    Full text link
    We present the dynamic propensity distribution as an explicit measure of the degree to which the dynamics in a liquid over the time scale of structural relaxation is determined by the initial configuration. We then examine, for a binary mixture of soft discs in two dimensions, the correlation between the spatial distribution of propensity and that of two localmeasures of configuration structure: the local composition and local free volume. While the small particles dominate the high propensity population,we find no strong correlation between either the local composition or the local free volume and the propensity. It is argued that this is a generic failure of purely local structural measures to capture the inherently non-local character of collective behaviour.Comment: Published, see below or http://www.iop.org/EJ/abstract/0953-8984/17/49/001/ Editing comments have been remove

    Hole-burning experiments within solvable glassy models

    Full text link
    We reproduce the results of non-resonant spectral hole-burning experiments with fully-connected (equivalently infinite-dimensional) glassy models that are generalizations of the mode-coupling approach to nonequilibrium situations. We show that an ac-field modifies the integrated linear response and the correlation function in a way that depends on the amplitude and frequency of the pumping field. We study the effect of the waiting and recovery-times and the number of oscillations applied. This calculation will help descriminating which results can and which cannot be attributed to dynamic heterogeneities in real systems.Comment: 4 pages, 8 figures, RevTe
    • …
    corecore