3,537 research outputs found

    Phase space characteristics of fragmenting nuclei described as excited disordered systems

    Get PDF
    We investigate the thermodynamical content of a cellular model which describes nuclear fragmentation as a process taking place in an excited disordered system. The model which reproduces very well the size distribution of fragments does not show the existence of a first order phase transition.Comment: 14 pages, TeX type, 7 figure

    Kinetic Heterogeneities at Dynamical Crossovers

    Full text link
    We perform molecular dynamics simulations of a model glass-forming liquid to measure the size of kinetic heterogeneities, using a dynamic susceptibility χss(a,t)\chi_{\rm ss}(a, t) that quantifies the number of particles whose dynamics are correlated on the length scale aa and time scale tt. By measuring χss(a,t)\chi_{\rm ss}(a, t) as a function of both aa and tt, we locate local maxima χ⋆\chi^\star at distances a⋆a^\star and times t⋆t^\star. Near the dynamical glass transition, we find two types of maxima, both correlated with crossovers in the dynamical behavior: a smaller maximum corresponding to the crossover from ballistic to sub-diffusive motion, and a larger maximum corresponding to the crossover from sub-diffusive to diffusive motion. Our results indicate that kinetic heterogeneities are not necessarily signatures of an impending glass or jamming transition.Comment: 6 pages, 4 figure

    Site occupation constraints in mean-field approaches of quantum spin systems at finite temperature

    Full text link
    We study the effect of site occupation on the description of quantum spin systems at finite temperature and mean-field level. We impose each lattice site to be occupied by a single electron. This is realized by means of a specific prescription. The outcome of the prescription is compared to the result obtained by means of a projection procedure which fixes the site occupation to one particle per site on an average. The comparison is performed for different representations of the Hamiltonian in Fock space leading to different types of mean-field solutions. The behaviour of order parameters is analyzed for each choice of the mean-field and constraint which fixes the occupation rate at each site. Sizable quantitative differences between the outcomes obtained with the two different constraints are observed.Comment: 18 pages, 2 figure

    Integrated On-Farm Decision Making: Economic Implications of Increased Variation in Litter Size

    Get PDF
    Increased litter sizes and associated piglet performance consequences, challenge swine producers. Stochastic modeling captured bioeconomic performance of individual piglets. As average litter size increased from 8.8 to 20.8 piglets, costs and revenues per head marketed from the demonstration herd decreased and total profit increased at a decreasing rate.stochastic modeling, farm business management, swine litter size, Agribusiness, Farm Management, Livestock Production/Industries,

    Localization Properties of Two Interacting Electrons in a Disordered Quasi One-Dimensional Potential

    Full text link
    We study the transport properties of two electrons in a quasi one-dimensional disordered wire. The electrons are subject to both, a disorder potential and a short range two-body interaction. Using the approach developed by Iida et al. [ Ann. Phys. (N.Y.) 200 (1990) 219 ], the supersymmetry technique, and a suitable truncation of Hilbert space, we work out the two-point correlation function in the framework of a non-linear sigma model. We study the loop corrections to arbitrary order. We obtain a remarkably simple and physically transparent expression for the change of the localization length caused by the two-body interaction.Comment: 10 page

    Chiral symmetry restoration in (2+1)-dimensional QEDQED with a Maxwell-Chern-Simons term at finite temperature

    Full text link
    We study the role played by a Chern-Simons contribution to the action in the QED3QED_3 formulation of a two-dimensional Heisenberg model of quantum spin systems with a strictly fixed site occupation at finite temperature. We show how this contribution affects the screening of the potential which acts between spinons and contributes to the restoration of chiral symmetry in the spinon sector. The constant which characterizes the Chern-Simons term can be related to the critical temperature TcT_c above which the dynamical mass goes to zero.Comment: 8 pages, 4 figure

    About the determination of critical exponents related to possible phase transitions in nuclear fragmentation

    Get PDF
    We introduce a method based on the finite size scaling assumption which allows to determine numerically the critical point and critical exponents related to observables in an infinite system starting from the knowledge of the observables in finite systems. We apply the method to bond percolation in 2 dimensions and compare the results obtained when the bond probability p or the fragment multiplicity m are chosen as the relevant parameter.Comment: 12 pages, TeX, 4 figure

    A model for nuclear matter fragmentation: phase diagram and cluster distributions

    Full text link
    We develop a model in the framework of nuclear fragmentation at thermodynamic equilibrium which can be mapped onto an Ising model with constant magnetization. We work out the thermodynamic properties of the model as well as the properties of the fragment size distributions. We show that two types of phase transitions can be found for high density systems. They merge into a unique transition at low density. An analysis of the critical exponents which characterize observables for different densities in the thermodynamic limit shows that these transitions look like continuous second order transitions.Comment: 27 pages, 5 figures; comments on microcanonical approach and other minor corrections added; references added; 1 figure change
    • …
    corecore