38 research outputs found

    Bench-to-bedside review: Rare and common viral infections in the intensive care unit – linking pathophysiology to clinical presentation

    Get PDF
    Viral infections are common causes of respiratory tract disease in the outpatient setting but much less common in the intensive care unit. However, a finite number of viral agents cause respiratory tract disease in the intensive care unit. Some viruses, such as influenza, respiratory syncytial virus (RSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), are relatively common. Others, such as adenovirus, severe acute respiratory syndrome (SARS)-coronavirus, Hantavirus, and the viral hemorrhagic fevers (VHFs), are rare but have an immense public health impact. Recognizing these viral etiologies becomes paramount in treatment, infection control, and public health measures. Therefore, a basic understanding of the pathogenesis of viral entry, replication, and host response is important for clinical diagnosis and initiating therapeutic options. This review discusses the basic pathophysiology leading to clinical presentations in a few common and rare, but important, viruses found in the intensive care unit: influenza, RSV, SARS, VZV, adenovirus, CMV, VHF, and Hantavirus

    Immunobiology of the critical asthma syndrome.

    No full text

    Airway transcriptomic profiling after bronchial thermoplasty

    Get PDF
    Background Bronchial thermoplasty is a nonpharmacological, device-based treatment option for a specific population of severe asthmatic subjects, but the underlying mechanisms are largely unknown. The purpose of this study is to identify potential altered pathways by bronchial thermoplasty using a transcriptomic approach. Methods Patients undergoing bronchial thermoplasty were recruited to the study, and a bronchial brushing sample was obtained before each bronchial thermoplasty session and sent for RNA sequencing. A variance component score test was performed to identify those genes whose expression varied after bronchial thermoplasty sessions. Differential gene expression meta-analysis of severe asthmatic subjects versus controls was performed using public repositories. Overlapping genes were included for downstream pathway and network analyses. Results 12 patients were enrolled in our study. A total of 133 severe asthma cases and 107 healthy controls from the public repositories were included in the meta-analysis. Comparison of differentially expressed genes from our study patients with the public repositories identified eight overlapping genes: AMIGO2, CBX7, NR3C2, SETBP1, SHANK2, SNTB1, STXBP1 and ZNF853. Network analysis of these overlapping genes identified pathways associated with neurophysiological processes. Conclusion We have shown that bronchial thermoplasty treatment alters several gene networks that are important in asthma pathogenesis. These results potentially elucidate the disease-modifying mechanisms of bronchial thermoplasty and provide several targets for further investigation

    Volatile emanations from in vitro airway cells infected with human rhinovirus

    No full text
    Respiratory viral infections such as human rhinovirus (HRV) can lead to substantial morbidity and mortality, especially in people with underlying lung diseases such as asthma and COPD. One proposed strategy to detect viral infections non-invasively is by volatile organic compound (VOC) assessment via analysis of exhaled breath. The epithelial cells are one of the most important cell lines affected during respiratory infections as they are the first line of pathogen defense. Efforts to discover infection-specific biomarkers can be significantly aided by understanding the VOC emanations of respiratory epithelial cells. Here we test the hypothesis that VOCs obtained from the headspace of respiratory cell culture will differentiate healthy cells from those infected with HRV. Primary human tracheobronchial cells were cultured and placed in a system designed to trap headspace VOCs. HRV-infected cells were compared to uninfected control cells. In addition, cells treated with heat-killed HRV and poly(I:C), a TLR3 agonist, were compared to controls. The headspace was sampled with solid-phase microextraction fibers and VOCs were analyzed by gas chromatography/mass spectrometry. We determined differential expression of compounds such as aliphatic alcohols, branched hydrocarbons, and dimethyl sulfide by the infected cells, VOCs previously associated with oxidative stress and bacterial infection. We saw no major differences between the killed-HRV, poly(I:C), and control cell VOCs. We postulate that these compounds may serve as biomarkers of HRV infection, and that the production of VOCs is not due to TLR3 stimulation but does require active viral replication. Our novel approach may be used for the in vitro study of other important respiratory viruses, and ultimately it may aid in identifying VOC biomarkers of viral infection for point-of-care diagnostics
    corecore