22,927 research outputs found
The Photometry of Undersampled Point Spread Functions
An undersampled point spread function may interact with the microstructure of
a solid-state detector such that the total flux detected can depend sensitively
on where the PSF center falls within a pixel. Such intra-pixel sensitivity
variations will not be corrected by flat field calibration and may limit the
accuracy of stellar photometry conducted with undersampled images, as are
typical for Hubble Space Telescope observations. The total flux in a stellar
image can vary by up to 0.03 mag in F555W WFC images depending on how it is
sampled, for example. For NIC3, these variations are especially strong, up to
0.39 mag, strongly limiting its use for stellar photometry. Intra-pixel
sensitivity variations can be corrected for, however, by constructing a
well-sampled PSF from a dithered data set. The reconstructed PSF is the
convolution of the optical PSF with the pixel response. It can be evaluated at
any desired fractional pixel location to generate a table of photometric
corrections as a function of relative PSF centroid. A caveat is that the
centroid of an undersampled PSF can also be affected by the pixel response
function, thus sophisticated centroiding methods, such as cross-correlating the
observed PSF with its fully-sampled counterpart, are required to derive the
proper photometric correction.Comment: 20 pages, 14 postscript figures, submitted to the PAS
Improvements in estimating proportions of objects from multispectral data
Methods for estimating proportions of objects and materials imaged within the instantaneous field of view of a multispectral sensor were developed further. Improvements in the basic proportion estimation algorithm were devised as well as improved alien object detection procedures. Also, a simplified signature set analysis scheme was introduced for determining the adequacy of signature set geometry for satisfactory proportion estimation. Averaging procedures used in conjunction with the mixtures algorithm were examined theoretically and applied to artificially generated multispectral data. A computationally simpler estimator was considered and found unsatisfactory. Experiments conducted to find a suitable procedure for setting the alien object threshold yielded little definitive result. Mixtures procedures were used on a limited amount of ERTS data to estimate wheat proportion in selected areas. Results were unsatisfactory, partly because of the ill-conditioned nature of the pure signature set
Soil, Water, and Vegetation Conditions in South Texas
The author has identified the following significant results. Reflectance differences between the dead leaves of six crops (corn, cotton, sorghum, sugar cane, citrus, and avocado) and the respective bare soils where the dead leaves were lying on the ground were determined from laboratory spectrophotometric measurements over the 0.5- to 2.5 micron wavelength interval. The largest differences were in the near infrared waveband 0.75- to 1.35 microns. Leaf area index was predicted from plant height, percent ground cover, and plant population for irrigated and nonirrigated grain sorghum fields for the 1975 growing season
Reflectance of vegetation, soil, and water
The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data
Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities
The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer
Soil, water, and vegetation conditions in south Texas
The author has identified the following significant results. Software development for a computer-aided crop and soil survey system is nearing completion. Computer-aided variety classification accuracies using LANDSAT-1 MSS data for a 600 hectare citrus farm were 83% for Redblush grapefruit and 91% for oranges. These accuracies indicate that there is good potential for computer-aided inventories of grapefruit and orange citrus orchards with LANDSAT-type MSS data. Mean digital values of clouds differed statistically from those for crop, soil, and water entities, and those for cloud shadows were enough lower than sunlit crop and soil to be distinguishable. The standard errors of estimate for the calibration of computer compatible tape coordinate system (pixel and record) to earth coordinate system (longitude and latitude) for 6 LANDSAT scenes ranged from 0.72 to 1.50 pixels and from 0.58 to 1.75 records
Dispersion of tracer particles in a compressible flow
The turbulent diffusion of Lagrangian tracer particles has been studied in a
flow on the surface of a large tank of water and in computer simulations. The
effect of flow compressibility is captured in images of particle fields. The
velocity field of floating particles has a divergence, whose probability
density function shows exponential tails. Also studied is the motion of pairs
and triplets of particles. The mean square separation is fitted to
the scaling form ~ t^alpha, and in contrast with the
Richardson-Kolmogorov prediction, an extended range with a reduced scaling
exponent of alpha=1.65 pm 0.1 is found. Clustering is also manifest in strongly
deformed triangles spanned within triplets of tracers.Comment: 6 pages, 4 figure
Sunward-propagating Alfv\'enic fluctuations observed in the heliosphere
The mixture/interaction of anti-sunward-propagating Alfv\'enic fluctuations
(AFs) and sunward-propagating Alfv\'enic fluctuations (SAFs) is believed to
result in the decrease of the Alfv\'enicity of solar wind fluctuations with
increasing heliocentric distance. However, SAFs are rarely observed at 1 au and
solar wind AFs are found to be generally outward. Using the measurements from
Voyager 2 and Wind, we perform a statistical survey of SAFs in the heliosphere
inside 6 au. We first report two SAF events observed by Voyager 2. One is in
the anti-sunward magnetic sector with a strong positive correlation between the
fluctuations of magnetic field and solar wind velocity. The other one is in the
sunward magnetic sector with a strong negative magnetic field-velocity
correlation. Statistically, the percentage of SAFs increases gradually with
heliocentric distance, from about 2.7% at 1.0 au to about 8.7% at 5.5 au. These
results provide new clues for understanding the generation mechanism of SAFs
A Side of Mercury Not Seen By Mariner 10
More than 60,000 images of Mercury were taken at ~29 deg elevation during two
sunrises, at 820 nm, and through a 1.35 m diameter off-axis aperture on the
SOAR telescope. The sharpest resolve 0.2" (140 km) and cover 190-300 deg
longitude -- a swath unseen by the Mariner 10 spacecraft -- at complementary
phase angles to previous ground-based optical imagery. Our view is comparable
to that of the Moon through weak binoculars. Evident are the large crater
Mozart shadowed on the terminator, fresh rayed craters, and other albedo
features keyed to topography and radar reflectivity, including the putative
huge ``Basin S'' on the limb. Classical bright feature Liguria resolves across
the northwest boundary of the Caloris basin into a bright splotch centered on a
sharp, 20 km diameter radar crater, and is the brightest feature within a
prominent darker ``cap'' (Hermean feature Solitudo Phoenicis) that covers the
northern hemisphere between longitudes 140-250 deg. The cap may result from
space weathering that darkens via a magnetically enhanced flux of the solar
wind, or that reddens low latitudes via high solar insolation.Comment: 7 pages, 4 PDF figures, pdfLaTeX, typos corrected, Fig. 2 modified
slightly to add crater diameters not given in published versio
- …