212 research outputs found

    Lymphocyte and brain neurotoxic esterase: Dose and time dependence of inhibition in the hen examined with three organophosphorus esters

    Full text link
    Certain organic phosphorus esters produce sensorimotor axonopathy in man and other species. There is an excellent correlation between the capacity of an organophosphorus compound to produce axonopathy and its ability to inhibit brain neurotoxic esterase (NTE) in hens. Because NTE is present in peripheral lymphocytes of both hen and man, it has been suggested that the lymphocyte enzyme might be useful both in experimental and clinical situations as an indicator of exposure to organophosphorus compounds producing axonopathy. Diethyl 4-nitrophenyl phosphate (paraoxon), tri-2-cresyl phosphate (TOCP), methyl 2,5-dichloro-4-bromophenyl phenylphosphonothionate (leptophos), and di-n-butyl-2,2-dichlorovinyl phosphate (di-n-butyl dichlorvos, DBDCV) were used to examine the relationship between lymphocyte and brain NTE inhibition in hens. As expected, paraoxon (0.75 mg/kg) did not inhibit NTE in brain or lymphocytes. TOCP (10 to 100 mg/kg), leptophos (25 to 150 mg/kg), and DBDCV (1.0 to 4.0 mg/kg) inhibited both brain and lymphocyte NTE activity in a doserelated manner with good correlation of inhibition between tissues taken 24 hr after exposure (r2 = 0.53 to 0.67; p r2 = 0.15 to 0.30; p < 0.10 to 0.05), with consistently less inhibition of lymphocyte NTE relative to brain NTE. This study indicates that assay of lymphocyte NTE can provide a good monitor of exposure to axonotoxic organophosphorus compounds within 24 hr between exposure and measurement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26225/1/0000305.pd

    Evidence for the existence of neurotoxic esterase in neural and lymphatic tissue of the adult hen,

    Get PDF
    Hen brain and spinal cord contain a number of esterases that hydrolyze phenyl valerate (PV). Most of this activity is sensitive to inhibition by micromolar concentrations of paraoxon. Included among the paraoxon-resistant esterases is neurotoxic esterase (NTE), which is inhibited in vivo and in vitro by certain organophosphorus compounds, such as mipafox, which cause delayed neurotoxicity. Since published information on the NTE content of non-neural tissues was heretofore lacking, a comprehensive study was undertaken of the occurrence of this enzyme in tissues of the adult hen (Gallus gallus domesticus), the species of choice in the study of organophosphorus-induced delayed neurotoxicity. Complete differential titration curves of PV esterase activity were obtained by preincubation of each tissue homogenate with a wide range of concentrations of paraoxon, a non-neurotoxic compound, plus or minus mipafox, a neurotoxic compound, followed by PV esterase assay. Brain NTE activity was determined to be 2426 +/- 104 nmoles [middle dot] min-1 [middle dot] (g wet weight)-1 (mean +/- S.E.M.). Titration of other tissues resulted in the following NTE activities, expressed as percentages of brain NTE activity: spinal cord (21%), peripheral nerve (1.7%), gastrocnemius muscle (0%), pectoralis muscle (0%), heart (14%), liver (0%), kidney (0%), spleen (70%), spleen lymphocytes (26%), and blood lymphocytes (24%). Using an abbreviated procedure, erythrocytes and plasma showed no NTE activity. These results indicate that NTE has limited distribution among the tissues of the adult hen and is present in lymphatic as well as neural tissue.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24034/1/0000283.pd

    Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds

    Full text link
    The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound‐induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. We carried out the present work to further develop the mouse model by testing the hypothesis that whole blood NTE inhibition could be used as a biochemical marker for exposure to neuropathic OP compounds. Because brain NTE and AChE inhibition are biomarkers of OPIDN and acute cholinergic toxicity, respectively, we compared NTE and AChE 20‐min IC50 values as well as ED50 values 1 h after single intraperitoneal (i.p.) injections of increasing doses of two neuropathic OP compounds that differed in acute toxicity potency. We found good agreement between the brain and blood for in vitro sensitivity of each enzyme as well for the ratios IC50(AChE)/IC50(NTE). Both OP compounds inhibited AChE and NTE in the mouse brain and blood dose‐dependently, and brain and blood inhibitions in vivo were well correlated for each enzyme. For both OP compounds, the ratio ED50(AChE)/ED50(NTE) in blood corresponded to that in the brain despite the somewhat higher sensitivity of blood enzymes. Thus, our results indicate that mouse blood NTE could serve as a biomarker of exposure to neuropathic OP compounds. Moreover, the data suggest that relative inhibition of blood NTE and AChE provide a way to assess the likelihood that OP compound exposure in a susceptible species would produce cholinergic and/or delayed neuropathic effects. Copyright © 2016 John Wiley & Sons, Ltd.The adult hen is the standard animal model for testing organophosphorus (OP) compounds for organophosphorus compound‐induced delayed neurotoxicity (OPIDN). Recently, we developed a mouse model for the biochemical assessment of the neuropathic potential of OP compounds based on brain neuropathy target esterase (NTE) and acetylcholinesterase (AChE) inhibition. The present work represents further development of the mouse model aimed at using whole blood NTE as a biomarker of exposure to neuropathic OP compounds and predicting OPIDN risk in susceptible species by comparing blood NTE and AChE inhibition.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134102/1/jat3305.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134102/2/jat3305_am.pd

    Kinetics of heat inactivation of phenyl valerate hydrolases from hen and rat brain

    Full text link
    Heat inactivation was studied at 45, 50, 55, and 60[deg] for all of the phenyl valerate hydrolases (PVase), including neurotoxic esterase (NTE) and inhibitor-resistant esterase (IRE), in homogenates of hen or rat brain or in preparations of hen brain microsomal membranes. Hen and rat brain homogenates were prepared in buffer (50 mM Tris/0.20 mM EDTA, pH 8.00, at 25[deg]). Hen brain microsomes were suspended either in buffer or in aqueous dimethyl sulfoxide (DMSO, 40%, w/v), or solubilized either in aqueous Triton X-100 (0.10%, w/v) or in 40% (w/v) DMSO. Enzyme activities were measured at 37[deg] using phenyl valerate as substrate. Each enzyme activity in all of the preparations exhibited biphasic heat inactivation kinetics. Apparent rate constants were calculated for the fast (kf) and slow (ks) reactions, along with the relative amounts of activity in each component (Af, As) expressed as percentages of the total activity. For a given preparation and temperature, respective values of kf or ks were similar for PVase, NTE, and IRE, with a mean kf/ks, ratio of 52 across all preparations. Af and As, were a func of temperature. Mean values of the apparent activation energies (Ea) for all activities and preparations were 44 and 25 kcal/mol for the fast and slow inactivation reactions respectively. These results indicate that all phenyl valerate hydrolases in hen and rat brain undergo a common heat-induced structural change leading to loss of enzymic activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26570/1/0000109.pd

    Diethyl [2,2,2-trifluoro-1-phenyl­sulfonyl­amino-1-(trifluoro­meth­yl)eth­yl]phospho­nate

    Get PDF
    The title compound, C13H16F6NO5PS, is of inter­est with respect to inhibition of serine hydro­lases. Its structure contains a 1.8797 (13) Å P—C bond and two inter­molecular N—H⋯O=P hydrogen bonds, resulting in centrosymmetric dimers. An intra­molecular N—H⋯O=P hydrogen bond is also present

    Phenylmethanesulfonyl fluoride elicits and intensifies the clinical expression of neuropathic insults

    Full text link
    It has been recently reported that phenyl-methanesulfonyl fluoride (PMSF) when given to hens after a neuropathic organophosphate (OP) promotes organophosphate-induced delayed polyneuropathy (OPIDP). Chicks are resistant to OPIDP despite high inhibition/aging of neuropathy target esterase (NTE), the putative target of OPIDP initiation. However, when PMSF (300 mg/kg s.c.) is given to chicks after di-butyl 2,2-dichlorovinyl phosphate (DBDCVP, 1 or 5 mg/kg s.c.), OPIDP is promoted. Inhibition/aging of at least 30% of NTE was thought to be an essential prerequisite for promotion to be elicited in adult hens. However, we observed in hens that when NTE is maximally affected (>90%) by phenyl N-methyl N-benzyl carbamate (40 mg/kg i.V.), a non-ageable inhibitor of NTE, and then PMSF is given (120 mg/kg/day s.c. × 3 days) clinical signs of neuropathy become evident. Methamidophos (50 mg/kg p. o. to hens), which produces in vivo a reactivatable form of inhibited NTE, was shown either to protect from or promote OPIDP caused by DBDCVP (0.45 mg/kg s. c), depending on the sequence of dosing. Because very high doses of methamidophos cause OPIDP, we considered this effect to be a “self-promoted” OPIDP. We concluded that NTE inhibitors might have different intrinsic activities for producing OPIDP once NTE is affected. Aging might differentiate highly neuropathic OPs, like DBDCVP, from less neuropathic OPs, like methamidophos, or from the least neuropathic carbamates, which require promotion in order for neuropathy to be expressed. Retrograde axonal transport in motor fibers was measured as the accumulation of 125 I-tetanus toxin in spinal cord after injection in the gastrocnemius muscle of chicks treated either with DBDCVP (5 mg/kg s.c.) or with DBDCVP followed by PMSF (300 mg/kg s.c). Retrograde axonal transport was reduced in both groups (to about 50%, 10 days after dosing) and returned to normal 27 days after dosing. However, DBDCVP-treated chicks had a mild neuropathy which recovered relatively quickly, whereas chicks to which PMSF was also given had more severe signs which did not recover by day 27. We concluded that promotion affects a site other than NTE and that it acts at a point downstream from initiation. PMSF was also shown to promote 2,5-hexanedione (2,5-HD) neuropathy. 2,5-HD was given to hens at doses (200 mg/kg/day i.p. × 8 days) which caused mild and reversible neuropathy. When PMSF (120 mg/kg/day × 2 days at the end of 2,5-HD treatment) was given, more severe and irreversible signs of neuropathy were observed. We conclude that promotion might be a common feature in neuropathies of different origin.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46158/1/204_2006_Article_BF02307272.pd

    Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer’s disease

    Get PDF
    We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood–brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations

    Cell Cycle Re-Entry and Mitochondrial Defects in Myc-Mediated Hypertrophic Cardiomyopathy and Heart Failure

    Get PDF
    While considerable evidence supports the causal relationship between increases in c-Myc (Myc) and cardiomyopathy as a part of a “fetal re-expression” pattern, the functional role of Myc in mechanisms of cardiomyopathy remains unclear. To address this, we developed a bitransgenic mouse that inducibly expresses Myc under the control of the cardiomyocyte-specific MHC promoter. In adult mice the induction of Myc expression in cardiomyocytes in the heart led to the development of severe hypertrophic cardiomyopathy followed by ventricular dysfunction and ultimately death from congestive heart failure. Mechanistically, following Myc activation, cell cycle markers and other indices of DNA replication were significantly increased suggesting that cell cycle-related events might be a primary mechanism of cardiac dysfunction. Furthermore, pathological alterations at the cellular level included alterations in mitochondrial function with dysregulation of mitochondrial biogenesis and defects in electron transport chain complexes I and III. These data are consistent with the known role of Myc in several different pathways including cell cycle activation, mitochondrial proliferation, and apoptosis, and indicate that Myc activation in cardiomyocytes is an important regulator of downstream pathological sequelae. Moreover, our findings indicate that the induction of Myc in cardiomyocytes is sufficient to cause cardiomyopathy and heart failure, and that sustained induction of Myc, leading to cell cycle re-entry in adult cardiomyocytes, represents a maladaptive response for the mature heart
    corecore