2,705 research outputs found

    Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors

    Get PDF
    The deafness caused by early onset hypothyroidism indicates that thyroid hormone is essential for the development of hearing. We investigated the underlying roles of the TRa1 and TRß thyroid hormone receptors in the auditory system using receptor-deficient mice. TRa1 and TRß, which act as hormone-activated transcription factors, are encoded by the Thra and Thrb genes, respectively, and both are expressed in the developing cochlea. TRß is required for hearing because TRß-deficient (Thrb tm1/tm1) mice have a defective auditory-evoked brainstem response and retarded expression of a potassium current (I K,f) in the cochlear inner hair cells. Here, we show that although TRa1 is individually dispensable, TRa1 and TRß synergistically control an extended array of functions in postnatal cochlear development. Compared with Thrb tm1/tm1 mice, the deletion of all TRs inThra tm1/tm1 Thrb tm1/tm1mice produces exacerbated and novel phenotypes, including delayed differentiation of the sensory epithelium, malformation of the tectorial membrane, impairment of electromechanical transduction in outer hair cells, and a low endocochlear potential. The induction ofI K,f in inner hair cells was not markedly more retarded than in Thrb tm1/tm1mice, suggesting that this feature of hair cell maturation is primarily TRß-dependent. These results indicate that distinct pathways mediated by TRß alone or by TRß and TRa1 together facilitate control over an extended range of functions during the maturation of the cochlea

    Spatiotemporal dynamics of insulitis in human Type 1 diabetes

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Type 1 diabetes (T1D) is an auto-immune disease characterised by the selective destruction of the insulin secreting beta cells in the pancreas during an inflammatory phase known as insulitis. Patients with T1D are typically dependent on the administration of externally provided insulin in order to manage blood glucose levels. Whilst technological developments have significantly improved both the life expectancy and quality of life of these patients, an understanding of the mechanisms of the disease remains elusive. Animal models, such as the NOD mouse model, have been widely used to probe the process of insulitis, but there exist very few data from humans studied at disease onset. In this manuscript, we employ data from human pancreases collected close to the onset of type 1 diabetes and propose a spatio-temporal computational model for the progression of insulitis in human T1D, with particular focus on the mechanisms underlying the development of insulitis in pancreatic islets. This framework allows us to investigate how the time-course of insulitis progression is affected by altering key parameters, such as the number of the CD20+ B cells present in the inflammatory infiltrate, which has recently been proposed to influence the aggressiveness of the disease. Through the analysis of repeated simulations of our stochastic model which track the number of beta cells within an islet, we find that increased numbers of B cells in the peri-islet space lead to faster destruction of the beta cells. We also find that the balance between the degradation and repair of the basement membrane surrounding the islet is a critical component in governing the overall destruction rate of the beta cells and their remaining number. Our model provides a framework for continued and improved spatio-temporal modelling of human T1D.This work was generously supported by the Wellcome Trust Institutional Strategic Support Award (WT105618MA). KT gratefully acknowledges the financial support of the EPSRC via grant EP/N014391/1. We are also pleased to acknowledge financial support from the European Unions Seventh Framework Programme PEVNET [FP7/2007-2013] under grant agreement number 261441 to NM. The participants of the PEVNET consortium are described at http://www.uta.fi/med/pevnet/ publications.html. Additional support was from a JDRF Career Development Award (5-CDA-2014-221-A-N) to SR and project grant 15/0005156 from Diabetes UK (to NM and SR)

    Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper

    No full text
    We experimentally demonstrate the use of saw-tooth optical pulses, which are shaped using a fiber Bragg grating, to achieve robust and high performance time-domain add-drop multiplexing in a scheme based on cross-phase (XPM) modulation in an optical fiber, with subsequent offset filtering. As compared to the use of more conventional pulse shapes, such as Gaussian pulses of a similar pulse width, the purpose-shaped saw-tooth pulses allow higher extinction ratios for the add and drop windows and significant improvements in the receiver sensitivity for the dropped and added channels

    Comparison of lumbar range of movement and lumbar lordosis in back pain patients and matched controls

    Get PDF
    Inconclusive findings have been shown in previous studies comparing lumbar range of movement (LROM) and lumbar lordosis between back pain patients and healthy subjects. In these studies, confounding variables such as age, gender, height, obesity, and pain level were usually not well controlled. The present study aimed to compare LROM and lumbar lordosis between back pain patients and matched controls. Fifteen male back pain patients and 15 age-, height-, obesity-, and physical activity-matched male controls were investigated. To minimize the effect of pain on the measurements, only patients with minimal or no pain at the time of testing were included in the study. Inclinometer technique was used for the evaluation of LROM in flexion, extension and lateral flexion as well as lumbar lordosis. A lumbar rotameter was used for measuring axial rotation. Pelvic motion was limited by a pelvic restraint device during LROM measurements. Results showed that there were no significant differences between the back pain and control groups in flexion, extension, lateral flexion and axial rotation LROM and also in lumbar lordosis. This may indicate that when a back pain patient is not in pain, LROM and lumbar lordosis may not be the measures that distinguish between back pain patients and subjects without back pain

    The transcription factor STAT6 plays a critical role in promoting beta cell viability and is depleted in islets of individuals with type 1 diabetes

    Get PDF
    This is the final version. Available on open access from Springer Verlag via the DOI in this recordAims/hypothesis: In type 1 diabetes, selective beta cell loss occurs within the inflamed milieu of insulitic islets. This milieu is generated via the enhanced secretion of proinflammatory cytokines and by the loss of anti-inflammatory molecules such as IL-4 and IL-13. While the actions of proinflammatory cytokines have been well-studied in beta cells, the effects of their anti-inflammatory counterparts have received relatively little attention and we have addressed this. Methods: Clonal beta cells, isolated human islets and pancreas sections from control individuals and those with type 1 diabetes were employed. Gene expression was measured using targeted gene arrays and by quantitative RT-PCR. Protein expression was monitored in cell extracts by western blotting and in tissue sections by immunocytochemistry. Target proteins were knocked down selectively with interference RNA. Results: Cytoprotection achieved with IL-4 and IL-13 is mediated by the early activation of signal transducer and activator of transcription 6 (STAT6) in beta cells, leading to the upregulation of anti-apoptotic proteins, including myeloid leukaemia-1 (MCL-1) and B cell lymphoma-extra large (BCLXL). We also report the induction of signal regulatory protein-α (SIRPα), and find that knockdown of SIRPα is associated with reduced beta cell viability. These anti-apoptotic proteins and their attendant cytoprotective effects are lost following siRNA-mediated knockdown of STAT6 in beta cells. Importantly, analysis of human pancreas sections revealed that STAT6 is markedly depleted in the beta cells of individuals with type 1 diabetes, implying the loss of cytoprotective responses. Conclusions/interpretation: Selective loss of STAT6 may contribute to beta cell demise during the progression of type 1 diabetes.Diabetes UKJDR

    Cellular stressors may alter islet hormone cell proportions by moderation of alternative splicing patterns

    Get PDF
    Changes to islet cell identity in response to type 2 diabetes (T2D) have been reported in rodent models, but are less well characterized in humans. We assessed the effects of aspects of the diabetic microenvironment on hormone staining, total gene expression, splicing regulation and the alternative splicing patterns of key genes in EndoC-βH1 human beta cells. Genes encoding islet hormones [somatostatin (SST), insulin (INS), Glucagon (GCG)], differentiation markers [Forkhead box O1 (FOXO1), Paired box 6, SRY box 9, NK6 Homeobox 1, NK6 Homeobox 2] and cell stress markers (DNA damage inducible transcript 3, FOXO1) were dysregulated in stressed EndoC-βH1 cells, as were some serine arginine rich splicing factor splicing activator and heterogeneous ribonucleoprotein particle inhibitor genes. Whole transcriptome analysis of primary T2D islets and matched controls demonstrated dysregulated splicing for ~25% of splicing events, of which genes themselves involved in messenger ribonucleic acid processing and regulation of gene expression comprised the largest group. Approximately 5% of EndoC-βH1 cells exposed to these factors gained SST positivity in vitro. An increased area of SST staining was also observed ex vivo in pancreas sections recovered at autopsy from donors with type 1 diabetes (T1D) or T2D (9.3% for T1D and 3% for T2D, respectively compared with 1% in controls). Removal of the stressful stimulus or treatment with the AKT Serine/Threonine kinase inhibitor SH-6 restored splicing factor expression and reversed both hormone staining effects and patterns of gene expression. This suggests that reversible changes in hormone expression may occur during exposure to diabetomimetic cellular stressors, which may be mediated by changes in splicing regulation.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.Animal Free Research UK (postgraduate studentship to L.W.H.); JDRF Career Development Award (5-CDA-2014-221-A-N to S.J.R., 5-SRA-2018-557-Q-R); Network for Pancreatic Organ donors with Diabetes (RRID:SCR_014641); The Leona M. & Harry B. Helmsley Charitable Trust (2018PG-T1D053).published version, accepted version (12 month embargo), submitted versio

    The role of the interferon/JAK-STAT axis in driving islet HLA-I hyperexpression in type 1 diabetes

    Get PDF
    This is the final version. Available on open access from Frontiers Media via the DOI in this recordThe hyperexpression of human leukocyte antigen class I (HLA-I) molecules on pancreatic beta-cells is widely accepted as a hallmark feature of type 1 diabetes pathogenesis. This response is important clinically since it may increase the visibility of beta-cells to autoreactive CD8+ T-cells, thereby accelerating disease progression. In this review, key factors which drive HLA-I hyperexpression will be explored, and their clinical significance examined. It is established that the presence of residual beta-cells is essential for HLA-I hyperexpression by islet cells at all stages of the disease. We suggest that the most likely drivers of this process are interferons released from beta-cells (type I or III interferon; possibly in response to viral infection) or those elaborated from influent, autoreactive immune cells (type II interferon). In both cases, Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathways will be activated to induce the downstream expression of interferon stimulated genes. A variety of models have highlighted that HLA-I expression is enhanced in beta-cells in response to interferons, and that STAT1, STAT2 and interferon regulatory factor 9 (IRF9) play key roles in mediating these effects (depending on the species of interferon involved). Importantly, STAT1 expression is elevated in the beta-cells of donors with recent-onset type I diabetes, and this correlates with HLA-I hyperexpression on an islet-by-islet basis. These responses can be replicated in vitro, and we consider that chronically elevated STAT1 may have a role in maintaining HLA-I hyperexpression. However, other data have highlighted that STAT2-IRF9 may also be critical to this process. Thus, a better understanding of how these factors regulate HLA-I under chronically stimulated conditions needs to be gathered. Finally, JAK inhibitors can target interferon signaling pathways to diminish HLA-I expression in mouse models. It seems probable that these agents may also be effective in patients; diminishing HLA-I hyperexpression on islets, reducing the visibility of beta-cells to the immune system and ultimately slowing disease progression. The first clinical trials of selective JAK inhibitors are underway, and the outcomes should have important implications for type 1 diabetes clinical management.EFSD/JDRF/LillyDiabetes UKSteve Morgan FoundationInnovative Medicines Initiative 2 Joint UndertakingEuropean Union Horizon 2020European Federation of Pharmaceutical Industries and Associations (EFPIA)JDRFLeona M. and Harry B. Helmsley Charitable TrustNetwork for Pancreatic Organ donors with Diabetes (nPO

    K+ to pi-mu+mu+ and doubly-charged Higgs

    Full text link
    The rate for the lepton-number-violating decay K+ to pi- mu+mu+ is calculated in a model which incorporates doubly-charged Higgs bosons. We find that for reasonable values of the parameters the decay branching ratio may be as large as 2E-16. Although this is a discouragingly small number, it is of the same order of magnitude as the rate mediated by massive Majorana neutrinos.Comment: 8 pages, RevTex, Figure1 is P

    Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis

    Get PDF
    Aims/hypothesis: It is unclear whether type 1 diabetes is a single disease or if endotypes exist. Our aim was to use a unique collection of pancreas samples recovered soon after disease onset to resolve this issue. Methods: Immunohistological analysis was used to determine the distribution of proinsulin and insulin in the islets of pancreas samples recovered soon after type 1 diabetes onset (<2 years) from young people diagnosed at age <7 years, 7-12 years and ≥13 years. The patterns were correlated with the insulitis profiles in the inflamed islets of the same groups of individuals. C-peptide levels and the proinsulin:C-peptide ratio were measured in the circulation of a cohort of living patients with longer duration of disease but who were diagnosed in these same age ranges. Results: Distinct patterns of proinsulin localisation were seen in the islets of people with recent-onset type 1 diabetes, which differed markedly between children diagnosed at <7 years and those diagnosed at ≥13 years. Proinsulin processing was aberrant in most residual insulin-containing islets of the younger group but this was much less evident in the group ≥13 years (p < 0.0001). Among all individuals (including children in the middle [7-12 years] range) aberrant proinsulin processing correlated with the assigned immune cell profiles defined by analysis of the lymphocyte composition of islet infiltrates. C-peptide levels were much lower in individuals diagnosed at <7 years than in those diagnosed at ≥13 years (median <3 pmol/l, IQR <3 to <3 vs 34.5 pmol/l, IQR <3-151; p < 0.0001), while the median proinsulin:C-peptide ratio was increased in those with age of onset <7 years compared with people diagnosed aged ≥13 years (0.18, IQR 0.10-0.31) vs 0.01, IQR 0.009-0.10 pmol/l; p < 0.0001). Conclusions/interpretation: Among those with type 1 diabetes diagnosed under the age of 30 years, there are histologically distinct endotypes that correlate with age at diagnosis. Recognition of such differences should inform the design of future immunotherapeutic interventions designed to arrest disease progression.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.We are grateful to Diabetes UK for financial support via project grant 16/0005480 (to NGM and SJR) and to JDRF for a Career Development Award to SJR (5-CDA-2014-221-A-N). The research was performed with the support of the Network for Pancreatic Organ Donors with Diabetes (nPOD), a collaborative type 1 diabetes research project sponsored by JDRF. Organ Procurement Organizations (OPO) partnering with nPOD to provide research resources are listed at http://www.jdrfnpod.org//for-partners/npod-partners/. ATH and BMS are supported by the NIHR Exeter Clinical Research Facility. BMS is supported as part of the MRC MASTERMIND consortium. TJM is funded by an NIHR clinical senior lecturer fellowship. ATH is supported by a Wellcome Trust Senior Investigator Award (WT098395/Z/12/Z) and an NIHR Senior Investigator award. RAO is supported by a Diabetes UK Harry Keen Fellowship.published version, accepted version (12 month embargo
    corecore