14,414 research outputs found
The One-Loop H^2R^3 and H^2(DH)^2R Terms in the Effective Action
We consider the one-loop B^2h^3 and B^4h amplitudes in type II string theory,
where B is the NS-NS two-form and h the graviton, and expand to lowest order in
alpha'. After subtracting diagrams due to quartic terms in the effective
action, we determine the presence and structure of both an H^2R^3 and
H^2(DH)^2R term. We show that both terms are multiplied by the usual
(t_8t_8\pm{1/8}\epsilon_{10}\epsilon_{10}) factor.Comment: 20 pages, 3 figures; corrected typo
Modelling Inflation in Australia
This paper estimates a range of single-equation models of inflation for Australia. We find that traditional models, such as the expectations-augmented standard Phillips curve or mark-up models, outperform the more micro-founded New-Keynesian Phillips curve (NKPC) in explaining trimmed mean inflation, both in terms of in-sample fit and significance of coefficients. This in large part reflects the weak instruments problem in the estimation of the NKPC, and is partly corrected by including a direct measure of inflation expectations, but we still find that the unemployment rate or growth in marginal costs (unit labour cost and import prices) provides a better fit than either the output gap or level of real marginal costs. These traditional models also perform well in out-of-sample tests, relative to alternative models and some common benchmarks, with the standard Phillips curve clearly superior to these benchmarks on this test. As inflation has become better anchored and hence less variable, the magnitude of the errors of the single-equation models has declined, although the explanatory power (in terms of R-squared) has fallen together with this greater stability. We also investigate the empirical importance of some other variables that are commonly cited as determinants of inflation, and find little evidence that either commodity prices or the growth rate of money directly influence Australian underlying inflation.inflation; modelling
Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis
Phagocytosis and receptor-mediated endocytosis are vitally important particle
uptake mechanisms in many cell types, ranging from single-cell organisms to
immune cells. In both processes, engulfment by the cell depends critically on
both particle shape and orientation. However, most previous theoretical work
has focused only on spherical particles and hence disregards the wide-ranging
particle shapes occurring in nature, such as those of bacteria. Here, by
implementing a simple model in one and two dimensions, we compare and contrast
receptor-mediated endocytosis and phagocytosis for a range of biologically
relevant shapes, including spheres, ellipsoids, capped cylinders, and
hourglasses. We find a whole range of different engulfment behaviors with some
ellipsoids engulfing faster than spheres, and that phagocytosis is able to
engulf a greater range of target shapes than other types of endocytosis.
Further, the 2D model can explain why some nonspherical particles engulf
fastest (not at all) when presented to the membrane tip-first (lying flat). Our
work reveals how some bacteria may avoid being internalized simply because of
their shape, and suggests shapes for optimal drug delivery.Comment: 18 pages, 5 figure
- …