8 research outputs found

    Incorporation of 3H-thymidine by different prokaryotic groups in relation to temperature and nutrients in a lacustrine ecosystem

    No full text
    International audienceThe incorporation of [3H-methyl] thymidine (3H-TdR) by Eubacteria, bacterial groups (alpha- and beta-Proteobacteria, Cytophaga-Flavobacter), and Archaea was measured according to temperature (7 and 17 degrees C) and nutrient levels (nitrogen, phosphorus, and carbon) in a lacustrine system (Sep, France). Short-term incubation was performed using a combination of microautoradiography and fluorescent in situ hybridization. Irrespective of the temperatures and nutrients studied, all the major phylogenetic bacterial groups assimilated 3H-TdR, and in most of the treatments studied, the proportion of beta-Proteobacteria taking up 3H-TdR was higher than those in the other bacterial groups. The proportion of Bacteria and different bacterial groups studied incorporating 3H-TdR were significantly increased, approximately 1.5-fold, by temperature except for alpha-Proteobacteria (7.6-fold). The nutrient effect was not the same for the different bacterial groups according to the temperatures studied. The proportions of alpha-Proteobacteria (at both temperatures) and Cytophaga-Flavobacter (at 7 degrees C) taking up 3H-TdR were significantly decreased and increased by adding N and P, respectively. Also, adding N, P, and C increased and decreased the percentage of beta-Proteobacteria incorporating 3H-TdR at 7 and 17 degrees C, respectively. The archaeal community showed a similar proportion of active cells (i.e., 3H-TdR) to the bacterial community, and uptake of 3H-TdR by Archaea was significantly increased (P < 0.05) by both temperature and nutrients. Thus, the assimilation of 3H-TdR by bacterial groups and Archaea in lacustrine system is significantly controlled by both temperature and nutrients

    Bacterial production in the recently flooded Sep Reservoir : Diel changes in relation to dissolved carbohydrates and combined amino acids

    No full text
    International audienceThe spatial distribution of bacterial abundance and production were measured every 4 h in a recently flooded oligo-mesotrophic reservoir (the Sep Reservoir, Puy-De-Dôme, France), in relation to concentrations of dissolved carbohydrates and combined amino acids. The concentration of dissolved organic matter (DOM) components in the recently flooded Sep Reservoir were higher than those measured in other lakes of similar trophic status. Short-term variations in the bacterial production in this new reservoir appeared cyclical and endogenous to bacterial communities. These results highlight the need for the evaluation of diel changes in bacterial production, if estimation of the daily production rate of bacteria is to be done accurately for a reliable model of carbon flow through bacterioplankton and ultimately through aquatic microbial food webs. Bacterial growth, measured over time and space, did not appear exclusively governed by DOM components from phytoplankton primary production

    Community composition and activity of prokaryotes associated to detrital particles in two contrasting lake ecosystems.

    No full text
    International audienceThe composition, distribution and extracellular enzyme activities of bacteria attached to small (2-50 microm in size) transparent exopolymer and Coomassie-stained proteinaceous particles (TEP and CSP) were examined in two lakes of different trophic status located in the Massif Central of France. TEP concentrations (10(4)-10(6) particle per L) were significantly higher in the more productive lake and were significantly related to chlorophyll a concentrations. The majority of TEP and CSP were colonized by bacteria that constituted 2.6% and 7.4% of the total 4',6-diamidino-2-phenylindole-stained bacteria in lakes Pavin and Aydat, respectively. In both lakes, the composition of particle-associated bacteria was different from that of free-living bacteria, the Betaproteobacteria and Bacteroidetes (i.e. former Cytophaga-Flavobacteria group) being the dominant groups on particles. We also found that 2-5 microm TEP were more colonized than 2-5 microm CSP in the two lakes, and that TEP colonization was higher in the less productive lake. Measurements of Leucine aminopeptidase and alpha-glucosidase activities in fractionated lake water (0.2-1.2, 1.2-5 and >5 microm fractions) indicated that proteolytic activity was always higher and that particle-associated bacteria have higher enzymatic activities than free-living bacteria. The glycolytic activities in the 1.2-5 and >5 microm fractions were related to the abundance of TEP. We conclude that small freshwater detrital organic particles constitute microhabitats with high bacterial activities in pelagic environments and, undoubtedly, present significant ecological implications for the prokaryotic community structure and function in aquatic ecosystems
    corecore