133 research outputs found

    Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat)

    Get PDF
    Harmful algal blooms (HABs) of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat) as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan), respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 – 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3

    Case studies in brain dosimetry for internal emitters: Is more detail needed for epidemiology?

    Get PDF
    Element-specific biokinetic models are used to reconstruct doses to systemic tissues from internal emitters. These models typically depict explicitly only those tissues that tend to dominate the systemic behaviour of the element over time. The remaining tissues are aggregated into a pool called Other tissue in which activity is assumed to be uniformly distributed. Explicitly identified tissues usually consist of some subset of the tissues liver, kidneys, bone, bone marrow, gonads, thyroid, spleen, and skin

    Comprehensive dosimetry for seven exposure sources at the earliest US uranium processing facility

    Get PDF
    Mallinckrodt Chemical Works (MCW) was the earliest uranium processing facility in the United States, beginning in 1942. The 2,514 workers included in the epidemiologic study were exposed to external gamma radiation, medical x-rays, internal radiation from intakes of pitchblende ore and its extracted radionuclides (mainly uranium isotopes and radium-226), and ambient levels of radon and its progeny [1]

    Superconductor-Insulator Transition in a Disordered Electronic System

    Full text link
    We study an electronic model of a 2D superconductor with onsite randomness using Quantum Monte Carlo simulations. The superfluid density is used to track the destruction of superconductivity in the ground state with increasing disorder. The non-superconducting state is identified as an insulator from the temperature dependence of its d.c. resistivity. The value of σdc\sigma_{\rm dc} at the superconductor-insulator transition appears to be non-universal.Comment: PostScript, 4 pages, figures include

    An L Band Spectrum of the Coldest Brown Dwarf

    Get PDF
    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. 2016 presented a spectrum of WISE 0855 from 4.5-5.1 micron (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in L band, from 3.4-4.14 micron. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. JWST will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.Comment: 19 pages, 21 figures. Accepted for publication in Ap

    Probing quantum and thermal noise in an interacting many-body system

    Full text link
    The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference fringe contrast for pairs of independently created one-dimensional Bose condensates. Analyzing different system sizes we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from Poissonian to Gumbel-type, in excellent agreement with theoretical predictions based on the Luttinger liquid formalism. We present the first experimental observation of quasi long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system

    Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function

    Get PDF
    Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ~10 minutes total duration) in healthy adults (n=3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30Hz) desynchronization in all subjects. This is the first demonstration of studying human cognition with OPMs and not only highlights this technology’s utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children

    A tool for functional brain imaging with lifespan compliance

    Get PDF
    The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelopment are limited due to growth in head-size with age and substantial head movement in young participants. Experimental designs to probe brain function are also limited by the unnatural environment typical brain imaging systems impose. However, developments in quantum technology allowed fabrication of a new generation of wearable magnetoencephalography (MEG) technology with the potential to revolutionise electrophysiological measures of brain activity. Here we demonstrate a lifespan-compliant MEG system, showing recordings of high fidelity data in toddlers, young children, teenagers and adults. We show how this system can support new types of experimental paradigm involving naturalistic learning. This work reveals a new approach to functional imaging, providing a robust platform for investigation of neurodevelopment in health and disease

    Cognitive neuroscience using wearable magnetometer arrays: non-invasive assessment of language function

    Get PDF
    Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically validated language lateralisation paradigm (covert verb generation: 120 trials, ~10 minutes total duration) in healthy adults (n=3). We show that it is possible to lateralise and localise language function on a case by case basis using this system. Specifically, we show that at a sensor and source level we can reliably detect a lateralising beta band (15-30Hz) desynchronization in all subjects. This is the first demonstration of studying human cognition with OPMs and not only highlights this technology’s utility as tool for (developmental) cognitive neuroscience but also its potential to contribute to surgical planning via mapping of eloquent cortex, especially in young children

    Moving magnetoencephalography towards real-world applications with a wearable system

    Get PDF
    Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessible to many people, and limits the experimental questions that can be addressed. For example, it has been difficult to apply neuroimaging to investigation of the neural substrates of cognitive development in babies and children, or in adult studies that require unconstrained head movement (e.g. spatial navigation). Here, we develop a new type of MEG system that can be worn like a helmet, allowing free and natural movement during scanning. This is possible due to the integration of new quantum sensors2,3 that do not rely on superconducting technology, with a novel system for nulling background magnetic fields. We demonstrate human electrophysiological measurement at millisecond resolution whilst subjects make natural movements, including head nodding, stretching, drinking and playing a ball game. Results compare well to the current state-of-the-art, even when subjects make large head movements. The system opens up new possibilities for scanning any subject or patient group, with myriad applications such as characterisation of the neurodevelopmental connectome, imaging subjects moving naturally in a virtual environment, and understanding the pathophysiology of movement disorders
    corecore