110 research outputs found

    Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides

    Get PDF
    We describe the design of a silicon-based source for radiation in the 0.5-14 THz regime. This new class of devices will permit continuously tunable, milliwatt scale, cw, room temperature operation, a substantial advance over currently available technologies. Our silicon terahertz generator consists of a silicon waveguide for near-infrared radiation, contained within a metal waveguide for terahertz radiation. A nonlinear polymer cladding permits two near-infrared lasers to mix, and through difference-frequency generation produces terahertz output. The small dimensions of the design greatly increase the optical fields, enhancing the nonlinear effect. The design can also be used to detect terahertz radiation

    Terahertz gain in a SiGe/Si quantum staircase utilizing the heavy-hole inverted effective mass

    Get PDF
    Modeling and design studies show that a strain-balanced Si1−xGex/Si superlattice onSi1−yGey-buffered Si can be engineered to give an inverted effective mass HH2 subband adjacent to HH1, thereby enabling a 77 K edge-emitting electrically pumped p–i–pquantum staircase laser for THz emission at energies below the 37 meV Ge–Ge optical phonon energy. Analysis of hole-phonon scattering, lifetimes, matrix elements, and hole populations indicates that a gain of 450 cm−1 will be feasible at f = 7.3 THz during 1.7 kA/cm2 current injection

    Phonon-pumped terahertz gain in n-type GaAs/AlGaAs superlattices

    Get PDF
    Local population inversion and far-IR gain are proposed and theoretically analyzed for an unbiased n-doped GaAs/Al0.15Ga0.85As superlattice pumped solely by phonons. The lasing transition occurs at the Brillouin zone boundary of the superlattice wave vector kzbetween the two conduction minibands CB1 and CB2 of the opposite curvature in kzspace. The proposed waveguided structure is contacted above and below by heat sinks at 300 K and 77 K, respectively. Atop the superlattice, a heat buffer layer confines longitudinal optical phonons for enhanced optical-phonon pumping of CB1 electrons. A gain of 345 cm−1 at 4.5 THz is predicted for a doping density of 2.8×1016 cm−3

    SiGe/Si THz laser based on transitions between inverted mass light-hole and heavy-hole subbands

    Get PDF
    We have investigated a SiGe/Si quantum-well laser based on transitions between the light-hole and heavy-hole subbands. The lasing occurs in the region of k space where the dispersion of ground-state light-hole subband is so nonparabolic that its effective mass is inverted. This kind of lasing mechanism makes total population inversion between the two subbands unnecessary. The laser structure can be electrically pumped through tunneling in a quantum cascade scheme. Optical gain as high as 172/cm at the wavelength of 50 μm can be achieved at the temperature of liquid nitrogen, even when the population of the upper laser subband is 15% less than that of the lower subband

    Intersubband lasing lifetimes of SiGe/Si and GaAs/AlGaAs multiple quantum well structures

    Get PDF
    The feasibility of population inversion is studied for the SiGe/Si system and compared with that of GaAs/AlGaAs. Because of the absence of strong polar optical phonon scattering in SiGe/Si, the lifetime difference of the upper and lower lasing levels, to which the population inversion and laser gain are proportional, is consistently an order of magnitude larger than that of GaAs/AlGaAs; nor does it show the sudden drop to zero or negative values when the lasing energy exceeds the optical phonon energy. Both systems studied are superlattices, each period of which consists of three coupled quantum wells and barriers

    Practicable enhancement of spontaneous emission using surface plasmons

    Get PDF
    The authors develop a rigorous theory of the enhancement of spontaneous emission from a light emitting device via coupling the radiant energy in and out of surface plasmon polaritons (SPPs) on the metal-dielectric interface. Using the GaN/Ag system as an example, the authors show that using SPP pays off only for emitters that have a low luminescence efficiency

    Nonlinear all-optical GaN/AlGaN multi-quantum-well devices for 100 Gb/s applications at λ = 1.55 μm

    Get PDF
    Using quantum-mechanical analysis, a strain-balanced stack of coupled GaN/AlGaNquantum wells has been engineered for bandwidth-optimized all-optical switching at low switching powers. Intersubband transitions between three conduction subbands provide the basis for the large, fast, nonlinear optical response. Optimized performance for a given symbol rate is obtained by engineering the response time and nonlinear phase shift

    Reduced threshold current of a quantum dot laser in a short period superlattice of indirect-band gap

    Get PDF
    We propose the idea of making quantum dot lasers by embedding direct-band gap quantum dots in a short period superlattice whose band gap is indirect. This technique reduces the threshold current and its temperature dependence. We show that a higher characteristic-temperature T0 can be achieved in a quantum dot laser with indirect GaAs/AlAs superlattice barriers compared to that with direct GaAs barriers
    corecore