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Modeling and design studies show that a strain-balanced Si12xGex /Si superlattice on
Si12yGey-buffered Si can be engineered to give an inverted effective mass HH2 subband adjacent
to HH1, thereby enabling a 77 K edge-emitting electrically pumpedp– i –p quantum staircase laser
for THz emission at energies below the 37 meV Ge–Ge optical phonon energy. Analysis of
hole-phonon scattering, lifetimes, matrix elements, and hole populations indicates that a gain of
450 cm21 will be feasible atf 57.3 THz during 1.7 kA/cm2 current injection. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1421079#

Previous work on electrically injected SiGe/Si quantum-
well ~QW! THz lasers1–3 has centered on the light-hole-1 to
heavy-hole-1~LH1 to HH1! intersubband transition that is
suitable forXY polarized vertical-cavity surface emitting la-
sers. In this letter we propose a hole-injectedZ-polarized
edge-emitting THz laser that employs the HH2 to HH1 tran-
sition in which an inverted effective mass~IEM! is engi-
neered for the HH2 subband near the zone center. Assuming
an operating temperature of 77 K, we calculate the well-and-
barrier parameters that yield the HH2 IEM, a local band
curvature produced by repulsion of nearby LH1 and HH2
subbands atki50. We determine the critical electric field
biasF0 that gives 3 meV spaced HH doublets in two neigh-
boring active QWs that comprise the proposed quantum
staircase laser~QSL!. The population distribution between
the HH doublets follows the Boltzmann function because of
the small energy separation and strong envelope-function
overlap, which leads to a population inversion between HH2
and HH1 in the two neighboring doublets. Hole-acoustic-
phonon intersubband scattering rates are calculated along
with the THz spontaneous emission rates to establish a rela-
tionship between the total hole population and injected cur-
rent density. Then a rate-equation analysis predicts the total
population inversion. The gain in the staircase is estimated as
a function of the selectively injected current densityJ. Our
proposed QSL is intended to be a useful adjunct to the LH1-
HH1 SiGe/Si THz laser being developed by the University of
Leeds, Cambridge University, in conjunction with DERA
and Heriot-Watt University.4,5 Unlike the quantum cascade
laser ~QCL!, the QSL does not contain chirped superlattice
injectors or wide/narrow coupled-well active regions. Thus,
the QSL is a simpler alternative to the SiGe/Si THz QCL
being developed by the Swiss group6 and by the University
of Delaware and Sarnoff Corporation.7

The SiGe/Si superlattice~SL! is assumed to be strain
balanced, that is, the compressively strained Si12xGex QW
layers and the tensile strained Si barrier layers are grown on

a relaxed Si12yGey buffer layer-on-̂100& Si ~a virtual sub-
strate!, where y is chosen to give zero net strain for the
specificx, l w , and l b being studied~l w5QW thickness,l b

5barrier thickness!. For SLs with ~or without! an electric
field applied, we determined the subband energies, subband
dispersion in (kx ,ky) space, wave function amplitudes, and
band mixing among HH, LH, and SO using the 636 band
k"p commercial software from Quantum Semiconductor Al-
gorithms, Inc., Northborough, MA. The software includes
strain effects and it uses a 0.68 eV Ge/Si valence band offset.
The IEM exists over several regions inx,l w ,l b space. For
example, using the SL boundary condition atqz50.5,
F50, x50.3, and keepingl b fixed at 40 Å, we find a LH1
IEM when 98 Å, l w,105 Å. An increase inl w produces a
HH2 IEM over the range of 105 Å, l w,112 Å. Increasing
l w to more than 112 Å leads to quasiparabolic HH2 disper-
sion. The changeover from the LH1 IEM to the HH2 IEM as
l w widens is general behavior. The quasiparabolicF0-biased
HH2 structures appear to be feasible for QSLs, but at higher-
J thresholds than IEM SLs.

a!Electronic mail: richard.soref@hanscom.af.mil
FIG. 1. Dispersion of a strain-symmetrized Si0.8Ge0.2/Si 2QW at bias ofF0

just above the anticrossing value.
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We want to eliminate optical phonon emission from the
upper laser state and make the radiative-to-nonradiative
branching ratio as large as possible. Since the QWs contain
Si–Si, Si–Ge and Ge–Ge lattice vibration modes~with op-
tical phonon energy\v0564.5, 50.8 and 37.2 meV, respec-
tively!, we engineer the SL so that the laser photon energy
(\vL) is less than the lowest-energy Ge–Ge phonons. This
requires small values ofx. We then analyze a model system
consisting of two QWs under electric field bias, knowing that
the easily computed two-well results for the lowest-two HH
states would give the essential behavior of a similarly biased
N-well staircase, the actual laser. After several (l w ,l b) trials,
the five-layer strain-symmetrized 2QW forx50.2 of 250 Å
Si/90 Å SiGe/35 Å Si/90 Å SiGe/250 Å Si was found to
exhibit a LH1 state 2 meV higher than HH2 atki50, as
desired for HH2 IEM. Figure 1 shows the calculated in-plane
~1,1! dispersion of this biased structure, where the Stark-split
levels are labeled HH1a, HH1b, HH2a, and HH2b. An anti-
crossing of HH1b and HH2a occurs at the fieldFac

5dEhh/P wheredEhh is the 33.1 meV zero-field separation
and the P is the 90 Å135 Å period, yielding Fac

526.4 kV/cm. The operating field of the laserF0 is made
larger thanFac to produce a 3 meV spacing between HH2a
and HH1b, namely,F0530 kV/cm. The resulting QSL
(\vL530 meV!, illustrated in Fig. 2 for the case of four
QWs, has two active doublets per QW, that is, a four-level
system discussed previously for GaAs/AlGaAs.8 In Fig. 2,
the laser transitions are indicated by the vertical arrows. The

transitions within the doublets are rapid. Figure 2 illustrates
the wave functions found at this bias. Figure 3 shows the
four-level system inki space.

The total concentrationN of holes injected into the dou-
blets isN5N11N2 , and when quasiequilibrium is reached
in the doublets, the Boltzmann relation givesN15N2 exp
(2dE/kT), wheredE is the 3 meV energy separation within
the doublets. This relation holds for all doublets. Also, the
injected current density can be related to the total population
as J5eNP/teff , where teff is the effective lifetime 1/teff

51/tsp11/tph, in whichtsp is the spontaneous emission life-
time in the Fig. 3 level-3-to-level-2 laser transition, andtph

is the nonradiative lifetime on that transition. In turn,tph is
governed by the hole-acoustic-phonon scattering rate, which
we have determined for the Fig. 1 2QW using the formalism
given by in Sunet al.9 Our calculations givetph51.0 ns. The
dipole matrix element of the vertical ink space lasing tran-
sition is the overlap integral between two HH wave functions
~upper and lower laser states! which, according to Fig. 2, are
localized in the same QW. We performed this integration
numerically and found that̂HHuuzuHHl&520 Å in Fig. 2.
This result in turn implies thattsp577ms. We used these
two lifetimes together with the Boltzmann distributions to
estimate hole populations, which showed a total inversion of
the Fig. 3 HH2(n) population relative to HH1(n), as de-
sired. Finally, with the aid of Eq.~5! in Ref. 3, we estimated
the gain as a function ofJ with the result presented in Fig. 4.
The peak gain of 450 cm21 at 7.3 THz is expected to be
larger than the QSL cavity losses such as free carrier absorp-
tion.

In conclusion, we have designed and simulated a 3–9
THz, 77 K strain-balancedZ-polarized SiGe/Sip– i –p laser
in a simplified form of the quantum cascade that we call the
quantum staircase. Thex, l w , andl b are selected to give the
IEM for HH2, which optimizes the THz gain. The staircase
is biased above the anticrossing field, creating two active HH
doublets per QW, a four-level system. The firstp1 contact
injects holes selectively into the doublets of the first
QW, while the secondp1 contact collects holes from the
doublets of the last QW in this high-gain superlattice.

FIG. 2. Band diagram of the proposed SiGe/Si HH2/HH1 QSL atF0 . The
labels (n21,n,n11,...,) represent the QWs in which the wave functions are
localized.

FIG. 3. Dispersion of the four active levels in Fig. 2.

FIG. 4. Calculated gain in the Fig. 2 QSL as a function of the hole current
density injected into the upper laser states.
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