371 research outputs found

    Pigment Cell, Volume I, Mechanisms in Pigmentation

    Get PDF

    Few-Shot Attribute Learning

    Full text link
    Semantic concepts are frequently defined by combinations of underlying attributes. As mappings from attributes to classes are often simple, attribute-based representations facilitate novel concept learning with zero or few examples. A significant limitation of existing attribute-based learning paradigms, such as zero-shot learning, is that the attributes are assumed to be known and fixed. In this work we study the rapid learning of attributes that were not previously labeled. Compared to standard few-shot learning of semantic classes, in which novel classes may be defined by attributes that were relevant at training time, learning new attributes imposes a stiffer challenge. We found that supervised learning with training attributes does not generalize well to new test attributes, whereas self-supervised pre-training brings significant improvement. We further experimented with random splits of the attribute space and found that predictability of test attributes provides an informative estimate of a model's generalization ability.Comment: Technical report, 25 page

    Evaluation of clinical prediction models (part 2): how to undertake an external validation study

    Get PDF
    External validation studies are an important but often neglected part of prediction model research. In this article, the second in a series on model evaluation, Riley and colleagues explain what an external validation study entails and describe the key steps involved, from establishing a high quality dataset to evaluating a model’s predictive performance and clinical usefulness

    Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist

    Get PDF
    The increasing availability of large combined datasets (or big data), such as those from electronic health records and from individual participant data meta-analyses, provides new opportunities and challenges for researchers developing and validating (including updating) prediction models. These datasets typically include individuals from multiple clusters (such as multiple centres, geographical locations, or different studies). Accounting for clustering is important to avoid misleading conclusions and enables researchers to explore heterogeneity in prediction model performance across multiple centres, regions, or countries, to better tailor or match them to these different clusters, and thus to develop prediction models that are more generalisable. However, this requires prediction model researchers to adopt more specific design, analysis, and reporting methods than standard prediction model studies that do not have any inherent substantial clustering. Therefore, prediction model studies based on clustered data need to be reported differently so that readers can appraise the study methods and findings, further increasing the use and implementation of such prediction models developed or validated from clustered datasets

    Transparent reporting of multivariable prediction models developed or validated using clustered data (TRIPOD-Cluster): explanation and elaboration

    Get PDF
    The TRIPOD-Cluster (transparent reporting of multivariable prediction models developed or validated using clustered data) statement comprises a 19 item checklist, which aims to improve the reporting of studies developing or validating a prediction model in clustered data, such as individual participant data meta-analyses (clustering by study) and electronic health records (clustering by practice or hospital). This explanation and elaboration document describes the rationale; clarifies the meaning of each item; and discusses why transparent reporting is important, with a view to assessing risk of bias and clinical usefulness of the prediction model. Each checklist item of the TRIPOD-Cluster statement is explained in detail and accompanied by published examples of good reporting. The document also serves as a reference of factors to consider when designing, conducting, and analysing prediction model development or validation studies in clustered data. To aid the editorial process and help peer reviewers and, ultimately, readers and systematic reviewers of prediction model studies, authors are recommended to include a completed checklist in their submission

    Guide to presenting clinical prediction models for use in clinical settings

    Get PDF
    For permission to use (where not already granted under a licence) please go to. Clinical prediction models estimate the risk of existing disease or future outcome for an individual, which is conditional on the values of multiple predictors such as age, sex, and biomarkers. In this article, Bonnett and colleagues provide a guide to presenting clinical prediction models so that they can be implemented in practice, if appropriate. They describe how to create four presentation formats and discuss the advantages and disadvantages of each format. A key message is the need for stakeholder engagement to determine the best presentation option in relation to the clinical context of use and the intended users

    Evaluation of clinical prediction models (part 2):how to undertake an external validation study

    Get PDF
    External validation studies are an important but often neglected part of prediction model research. In this article, the second in a series on model evaluation, Riley and colleagues explain what an external validation study entails and describe the key steps involved, from establishing a high quality dataset to evaluating a model’s predictive performance and clinical usefulness.</p
    • …
    corecore